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A Comprehensive Survey on Multi-modal Conversational
Emotion Recognition with Deep Learning

YUNTAO SHOU, TAO MENG, WEI AI, and FANGZE FU, College of Computer and Mathematics,
Central South University of Forestry and Technology, Changsha, China
NAN YIN, Department of Computer Science, Mohamed bin Zayed University of Artificial Intelligence,
Masdar City, United Arab Emirates
KEQIN LI, Department of Computer Science, State University of New York at New Paltz, New Paltz,
New York, USA

Multi-modal Conversation Emotion Recognition (MCER) aims to recognize and track the speaker’s emotional
state using text, speech, and visual information. Compared with traditional single-utterance multi-modal
emotion recognition or single-modal conversation emotion recognition, MCER is more challenging. It requires
modeling complex emotional interactions and learning consistent and complementary semantics across mul-
tiple modalities. Although many deep learning-based approaches have been proposed for MCER, there is still
a lack of systematic reviews summarizing existing modeling methods. Therefore, a timely and comprehensive
overview of MCER’s recent advances in deep learning is of great significance. In this survey, we provide a com-
prehensive overview of MCER modeling methods and roughly divide MCER methods into four categories, i.e.,
context-free modeling, sequential context modeling, speaker-differentiated modeling, and speaker-relationship
modeling. Unlike conventional taxonomies based on modality combinations or task-stage decomposition, our
framework focuses on how models structurally capture conversational dynamics, speaker roles, and emotional
dependencies. In addition, we further discuss MCER’s publicly available popular datasets, multi-modal feature
extraction methods, application areas, existing challenges, and future development directions. We hope this
review provides valuable insights into the current state of MCER research and inspires the development of
more effective models.
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1 Introduction
With the development of the mobile Internet, social media has become the main platform for
people to communicate with each other [80]. Users can fully express their emotions through
multi-modal data such as text, voice, image, and video. Building a Multi-modal Conversational
Emotion Recognition (MCER) model using multi-modal data is of vital practical significance for
understanding users’ true emotional intentions [22]. Therefore, researchers have been trying to
give machines the ability to understand emotions in recent years [56, 157, 163].

Fig. 1. An example of an MCER dataset which
contains three modal features: video, audio, and
text. The task of MCER is to identify the emotion
label of each speaker at the currentmoment based
on the utterance content (e.g., neutral, angry, and
surprised).

Before the emergence of MCER, early methods
[45, 68, 116, 125, 161] primarily relied on single-
modal data, such as text or speech.These approaches
mainly focused on modeling contextual dependen-
cies within the same modality and leveraging the
semantic content of words or audio signals to recog-
nize emotions [77, 104, 135, 141]. However, relying
solely on textual information may be insufficient
for accurately interpreting a speaker’s emotional
state, as speakers often express their opinions in a
reserved or implicit manner [21, 87, 164]. For exam-
ple, a speaker may be veiled in expressing his anger,
which may result in a more neutral utterance. In
response to the above problems, MCER technology
was proposed to solve the problem of insufficient
expression of text semantic information [87, 102,
103, 141]. As shown in Figure 1, MCER aims to ex-
tract semantic information complementary within
and between modalities and identify the emotions
expressed by speakers in text, audio, and video. One
major advantage of MCER is its ability to enhance
emotion understanding when the emotional polar-
ity conveyed by text alone is insufficient [60]. In such cases, the model can leverage visual cues
(e.g., facial expressions) and acoustic signals (e.g., tone of voice) to supplement and enrich the
emotional representation [121, 137–140]. As illustrated in Figure 2(a), the text modality alone
predicts the speaker’s emotion to be “Neutral,” whereas the audio and visual modalities correctly
predict the speaker’s emotion to be “Sad,” highlighting the limitations of relying solely on text in
emotional context inference. Furthermore, to validate the effectiveness of multi-modal fusion, we
provide LR-GCN latent space visualizations for both unimodal and multi-modal settings in Figure
2(b) and (c). It is evident that the multi-modal feature space yields better inter-class separation,
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Fig. 2. Illustration of the advantage of multi-modal fusion in emotion recognition. (a) Example from the
IEMOCAP dataset showing that the textual modality alone may fail to capture emotional intent (“Neutral”),
while audio and visual modalities correctly identify the emotion as “Sad.” (b) Latent space visualization of
GS-MCC with unimodal (text-only) input shows overlapping clusters and poor separation between emotion
classes. (c) The same visualization under multi-modal fusion shows significantly improved class separability,
demonstrating the effectiveness of incorporating audio-visual information.

especially among subtle emotions such as “Neutral,” “Frustrated,” and “Sad,” demonstrating superior
discriminative capability.

However, unlike traditional single-utterance multi-modal emotion recognition or single-modal
conversation emotion recognition, MCER is a more challenging issue. It requires consideration
of factors such as multi-modal context, dialogue scenarios, the speaker’s emotional inertia, and
the interlocutor’s stimulation [9, 152]. Powerful deep learning technology [158] enables MCER
to recognize emotion by fusing semantic features with complex emotional interactions. Fea-
ture fusion in MCER mainly considers intra-modal contextual semantic information fusion and
inter-modal complementary semantic information fusion [38]. On the one hand, intra-modal con-
textual semantic information fusion refers to extracting the temporal and spatial dependencies
of speaker feature representations in each modality. On the other hand, complementary seman-
tic information fusion between modalities refers to using the interactive information between
different modalities to enhance the emotional understanding ability of the model. MCER synergis-
tically improves the effect of emotion recognition by fusing the characteristics of various modal
data, which has important theoretical significance for processing and understanding multi-modal
data [31, 131, 157].
Despite the growing number of researchers focusing on new models and methods for MCER

[9, 19, 65], there is still a lack of understanding regarding the theoretical and methodological
classification of MCER, particularly those based on deep learning. To the best of our knowledge,
this survey is the first comprehensive survey focusing on deep learning in MCER. Existing reviews
mainly focus on multi-modal emotion recognition with modal combination [155] or multi-modal
emotion recognition with task stage decomposition (i.e., feature extraction, feature fusion, and clas-
sification) [164], without fully considering conversational dynamics, speaker roles, and emotional
dependencies.

Different from previous taxonomies, we propose a novel classification framework that emphasizes
how methods characterize and model conversational dynamics. Specifically, we categorize MCER
methods into four distinct types: context-free modeling, sequential context modeling, speaker-
differentiated modeling, and speaker-relationship modeling, as illustrated in Figure 3.
Based on the above framework, this survey systematically reviews the key research efforts

in MCER. First, we introduce several widely used and publicly available datasets, along with
commonly adopted feature extraction methods across modalities. Next, we detail the proposed
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Fig. 3. A taxonomy of modeling approaches for MCER in conversation. We categorize existing MCER methods
into four categories, i.e., context-free modeling, sequential context modeling, distinguishing speaker modeling,
and speaker-relationship modeling.

modeling taxonomy and comprehensively analyze representative methods within each category.
We then discuss evaluation metrics frequently used in MCER experiments. Following that, we
examine real-world applications and key challenges faced in this field. Finally, we outline promising
directions for future research.

The contributions made in this article are summarized as follows:

—New Taxonomy: We provide a new taxonomy forMCER. Specifically, we classify existingMCER
methods into four groups: context-free modeling, sequential context modeling, distinguishing
speaker modeling, and speaker-relationship modeling.

—Comprehensive Review: This article provides the most comprehensive review of deep learn-
ing and machine learning algorithms for MCER. For each modeling approach, we provide
representative models and make corresponding comparisons.

—Abundant Resources: We collect relevant resources about MCER, including state-of-the-art
models and publicly available datasets. This article can serve as a practical guide for learning
and developing different emotion recognition algorithms.

—Future Directions: We analyzed the limitations of existing MCER methods and proposed
possible future research directions in many aspects, such as the collaborative generation
of multi-modal data, the deep fusion of multi-modal features, and the unbiased learning of
multi-modal emotions.

The article is organized as follows: Section 2 summarizes the publicly available and popular
datasets in the field of MCER. Section 3 illustrates the background, definitions, and commonly
used feature extraction techniques for MCER. Section 4 broadly divides MCER methods into four
categories and analyzes their advantages and disadvantages. Section 5 summarizes some commonly
used evaluation metrics for MCER tasks. Section 6 gives the performance of different algorithms on
the IEMOCAP and MELD datasets. Section 7 discusses the real-life applications of MCER. Section 9

ACM Transactions on Information Systems, Vol. 44, No. 2, Article 47. Publication date: January 2026.
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Table 1. Publicly Available Benchmark Datasets in MCER

Datasets Year Modality Available at

IEMOCAP [4] 2008 Text, Video, Audio https://sail.usc.edu/iemocap/
MELD [86] 2019 Text, Video, Audio https://web.eecs.umich.edu/~mihalcea/downloads/MELD.Raw.tar.gz

DailyDialog [57] 2017 Text https://huggingface.co/datasets/daily_dialog
EmoryNLP [149] 2017 Text https://github.com/emorynlp/character-mining
SEMAINE [76] 2012 Text, Video, Audio https://semaine-db.eu/

EmotionLines [32] 2018 Text https://doraemon.iis.sinica.edu.tw/emotionlines/index.html
EmoContext [7] 2019 Text https://www.humanizing-ai.com/emocontext.html

Table 2. Distribution of Seven Conversational Emotion Recognition Datasets on Different
Emotion Labels

Labels IEMOCAP MELD EmoContext EmotionLines EmoryNLP DailyDialog SEMAINE

Neutral 1,708 6,436 - 6,530 15,104 855,72 -
Happiness/Joy 648 2,308 4,669 1,710 11,020 12,885 93

Surprise/Powerful - 1,636 - 1,658 4,252 1,823 -
Sadness 1,084 1,002 5,838 498 3,376 1,150 58

Anger/Mad 1,103 1,607 5,954 772 5,328 1,022 41
Disgust - 361 - 338 - 354 7

Fear/Scared - 358 - 255 6,584 74 3
Frustrated 1,849 - - - - - -
Excited 1,041 - - - - - -
Other - - 21,960 - 4,760 - 197

illustrates the problems of existing research, and Section 10 gives directions for future research.
Finally, we conclude the work of this article.

2 Popular Benchmark Datasets
Table 1 presents seven publicly available emotion recognition benchmark datasets. We counted
the release time, modality, and open source URL for each dataset. As shown in Table 2, we also
counted the distribution of the dataset on different emotional labels, and the data showed a long-tail
distribution.

2.1 IEMOCAP
The interactive emotional dyadic motion capture database (IEMOCAP) dataset [4] was released
in 2008 and contains 12.46 hours of conversations. The IEMOCAP dataset contains three modal
features, i.e., video, audio, and text, and it is the first multi-modal dataset for MCER. In the IEMOCAP
dataset, 10 theater actors express specific emotion categories (i.e., sad, neutral, frustrated, anger,
happy, and excited) through binary dialogue. To ensure the consistency and accuracy of annotation,
each sentence is annotated by multiple experts.

2.2 MELD
The multi-modal emotionLines (MELD) dataset [86] is from the classic TV series Friends, which
contains text, video, and audio data. The MELD dataset contains a total of 13,709 video clips,
and each sentence is labeled as a specific emotion (i.e., anger, neutral, fear, disgust, surprise, joy,
and disgust). In addition, the MELD dataset is also annotated by neutral, negative, and positive
three-category emotion. To ensure the consistency and accuracy of annotation, each sentence is
annotated by multiple experts.
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2.3 DailyDialog
The DailyDialog dataset [57] is a multi-turn dialogue dataset about daily chat scenarios, which
only contains text modalities. The DailyDialog dataset contain 13,000 dialogues and labels each
sentence with intention (i.e., inform, commissive, directives, and questions) and emotion (surprise,
sadness, fear, happiness, disgust, and anger). Each sentence is annotated jointly by three experts.

2.4 EmoryNLP
EmoryNLP [149] is a unimodal dataset, containing only text modalities. The EmoryNLP dataset
contains 12,606 utterances, and each utterance is annotated with seven emotions: peaceful, scared,
crazy, powerful, sad, happy, and neutral. EmoryNLP dataset is divided into training set, testing set,
and validation set.

2.5 SEMAINE
The sustained emotionally colored machine–human interaction (SEMAINE) [76] is a multi-modal
conversation dataset, which contains four binary conversations between robots and humans. The
SEMAINE dataset has 95 dialogues with a total of 5,798 sentences. Four emotional dimensions are
marked: Valence, Arousal, Expectancy, and Power. Valence, Arousa, and Expectancy are continuous
values in the range [−1, 1], and the size of the SEMAINE dataset is small.

2.6 EmotionLines
The EmotionLines dataset [32] comes from binary conversations between Friends and Facebook,
and it only contains text data. The EmotionLines dataset contains 1,000 dialogues with a total
of 29,245 sentences. Seven categories of emotions are marked: neutral, fear, surprise, sadness,
anger, happiness, and disgust. The EmotionLines dataset is rarely used in conversational emotion
recognition.

2.7 EmoContext
The emotion contextual detection (EmoContext) dataset [7] only contains text data. It has a total of
38,421 dialogues and a total of 115,263 sentences. Three types of emotions are marked: happiness,
sadness, and anger. Although the EmoContext data is large, it is rarely used in conversational
emotion recognition because it only contains text data.

2.8 CH-SIMS
The Chinese single-label multi-modal sentiment analysis (CH-SIMS) [143] is a benchmark dataset
designed for Chinese multi-modal sentiment analysis tasks. This dataset is constructed from real
Chinese video conversations, covering three modalities: text, audio, and vision, and has a good
foundation for multi-modal fusion and alignment. CH-SIMS contains a total of about 10,000 Chinese
sentence-level samples, all of which are accompanied by manually annotated continuous sentiment
intensity labels (ranging from −1 to +1) and single-label classifications (positive, neutral, and
negative). Compared with mainstream English multi-modal sentiment analysis datasets such as
IEMOCAP and MELD, CH-SIMS is more in line with the characteristics of Chinese language
expression, especially when faced with semantic ambiguity (e.g., irony and sarcasm), there may be
significant inconsistencies between modalities.

2.9 MuSE
Multi-modal Sentiment dataset (MuSE) [105] is a multi-lingual andmulti-modal emotion recognition
dataset, which aims to study the performance of multi-modal emotion modeling in different
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Fig. 4. Timeline of MCER algorithms.

languages and cross-cultural contexts. The dataset contains natural speech videos from English and
Spanish, with about 2,800 samples, covering three modalities: text, audio, and vision. Each video is
recorded by real participants expressing freely around a specific topic, and provides continuous
emotion labels, including valence, arousal, and dominance. The labels are derived from the fusion
of self-reports and third-party manual evaluations to enhance the objectivity and consistency of
annotations. At the modality level, MuSE provides high-quality speech features, expressions, and
body posture information, and is equipped with precisely aligned text transcription data, making
it suitable for research tasks such as multi-modal fusion, modal alignment analysis, and modal
inconsistency modeling. In addition, since the dataset has both multi-lingual and multi-modal
characteristics, it provides an important experimental platform for cross-lingual emotion transfer
learning, multi-modal collaborative modeling, and emotion recognition in low-resource languages.

3 Background, Definition, and Feature Extraction
3.1 Background
As shown in Figure 4, we counted MCER algorithms from 2000 to 2023. As can be seen from
the figure, before 2018, traditional machine learning algorithms were mainly used, and then
deep learning algorithms gradually became the main ones. Next, we briefly return to the main
development history of the MCER algorithm.

3.1.1 Brief History of Conversational Emotion Recognition. The emotion recognition method
based on the dictionary is the earliest used for emotion recognition [25], which motivated early
work on Naive Bayes method [16]. With the widespread application of machine learning algorithms
in classification tasks, representative algorithms such as the Support Vector Machine (SVM)
[37, 94] and binary decision tree [10, 51, 67] have also gained prominence in emotion recognition.
The above-mentioned method determines the category of emotion by learning the polarity and
occurrence frequency of emotional words in the text, which is difficult to extract the semantic
information and context information.

ACM Transactions on Information Systems, Vol. 44, No. 2, Article 47. Publication date: January 2026.
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Encouraged by the success of Convolutional Neural Networks (CNNs) in computer vision,
CNNs began to be migrated to text classification tasks and received extensive research attention
[43, 46, 48]. In 2017, Poria et al. [84] used Long Short-term Memory (LSTM) for the first time to
resolve dependencies between contexts. Since then, improvements, extensions, and applications of
LSTMs and Gated Recurrent Units (GRUs) have increased [26, 27, 75, 90]. Until recently, many
Graph Neural Networks (GNNs)-based methods (e.g., [21, 40, 55, 99, 148]) emerged. Apart from
CNNs, Recurrent Neural Networks (RNNs), and GNNs, many alternative Transformer-based
methods (e.g., [54, 161, 163]) have been developed in the past decades. We detail the categories to
which these algorithms belong in Section 4.

3.1.2 MCER versus Traditional Machine Learning. MCER methods based on traditional machine
learning [10, 37, 51, 62, 67, 94] are closely related to hand-extracted features, which have attracted
increasing attention from the datamining and emotion recognition communities.Thesemethods aim
to learn the feature embeddings of raw data for subsequent downstream tasks such as classification
and clustering. The classic conversational emotion recognition method based on machine learning
is to use SVM to map emotional features to a hyperplane and classify them [3, 94]. However, these
methods require a large amount of high-quality labeled data.

3.1.3 Conversational Emotion Recognition versus CNN. The CNN-based emotion recognition
methods [46, 48, 69] are the first deep learning method to solve the emotion classification problem
historically [45]. These CNN-based methods employ convolutional filters to extract semantic
features of text so that the model can use supervised learning to understand the meaning of text.
Similar to machine learning algorithms, CNN can also map emotional features into vector space
through mapping functions. The difference is that this mapping function is learned in an end-to-end
manner. Since the convolution kernel extracts local receptive field information, CNN cannot contain
contextual semantic information.

3.1.4 MCER versus RNN. The RNN-based emotion recognition methods [46, 70, 75, 112] are
developed on the basis of CNN, but they believe that contexts should be mutually influential and
interdependent [70, 112]. These RNN-based methods usually use LSTM or GRU (to avoid gradient
disappearance or gradient explosion) to extract semantic features including context. Similar to
CNN, RNN can also map emotional features into vector space through mapping functions in an
end-to-end manner.

3.1.5 MCER versus Transformer. Similar to the RNN-based emotion recognition method, the
Transformer-based emotion recognition methods [38, 61, 89, 114] also extract semantic infor-
mation including context, and completes subsequent emotion classification based on this [61].
However, unlike RNN, Transformer’s sequential context modeling ability is better than RNN.There-
fore, the accuracy of the Transformer-based emotion recognition methods are significantly better
than RNNs.

3.1.6 MCER versus GNN. The GNN-based emotion recognition methods [40, 55, 63, 99, 157]
inherit the idea of the RNN method, i.e., the contexts should interact and depend on each other [21].
On the basis of RNN, GNNs believe that there is also a relationship of mutual influence between
speakers. Therefore, GNNs model the dialogue relationship between speakers through the inherent
properties of the graph structure.

3.2 Definitions and Preliminaries
The symbols used in this article are listed in Table 3. Now, we define the sets needed to understand
this article. In particular, we use uppercase letters for matrices and lowercase letters for vectors.

ACM Transactions on Information Systems, Vol. 44, No. 2, Article 47. Publication date: January 2026.
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Table 3. Some Symbols Commonly Used in the Article

Notations Descriptions

|· | The length of the set.⊙
Element-wise product.

G A graph.
V A set of nodes in a graph.
E A node E ∈ + .
E A set of edges in a graph.
48 9 An edge 48 9 ∈ �.
# (E) The neighbors of a node E .
( A speaker.
D An utterance.
 The context window size.
" The number of the speakers.
! The number of utterances in a dialogue.
* The set of contextual utterance.
R The type of edge.
W Learnable parameters.
A The adjacency matrix of a graph.
< The node properties of the graph.
GC ∈ R3 3-dimensional text feature vectors.
G0 ∈ R: :-dimensional audio feature vectors.
G E ∈ Rℎ ℎ-dimensional video feature vectors.
G Concatenated video, audio, and text feature vectors.

Table 4. We Assume That There Are Three Speakers in a Dialogue, and the Window Size  of the
Dialogue is Set to 6

Speaker Utterances Description

�0 ,�1 ,�2 D01 , D
0
3 , D

1
2 , D

1
5 , D

2
4, D

2
6 Contextual utterances

(1 D17 Predicted utterance

The dialogue process is as shown above.

Definition 1 (Utterances Context). The MCER task aims to recognize the emotional changes
(e.g., happiness and sadness) of speakers {(1, (2, . . . , (" } at the current moment C in a dialogue. !
represents the number of utterances in a dialogue,* represents a set of contextual utterances, and
* = {D1, D2, . . . , D!}.

TheMCER task aims to correctly classify each utterance by incorporating contextual information.
At the current moment C , the model needs to infer the speaker’s emotion based on the context
information {D1, D2, . . . , DC−1}. We assume that the context window size is set to  . The set of
contextual utterances is defined as follows:

�_ = {D8 | 8 ∈ [C −  , C − 1], D8 ∈ *_, | �_ |≤  }. (1)

When the context window size is 6, the speaker’s contextual utterances and predicted utterances
are shown in Table 4.

Definition 2 (Dialogue Graph). A dialogue graph is represented as G = {V, E,R,W}, whereV
is a set of nodes in the graph, E is a set of edges, E8 ∈ V represents the 8th node, 48 9 = (E8 , E 9 ) ∈ E
represents a directed edge from E8 to E 9 , and the relationship A8 9 ∈ E represents that there is a
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Fig. 5. The proposed MCER methods mainly include multi-modal feature extraction, multi-modal emotion
representation, and emotion classifier.

dialog relationship between nodes E8 and E 9 . The neighbor nodes of node E are represented as
# (E) = {D ∈ V|(E,D) ∈ E}. A ∈ R=×= means the adjacency matrix with A8 9 = 1 if 48 9 ∈ E,
otherwise A8 9 = 0. X ∈ R<×< represents the node properties of the graph. For the MCER task
based on GCN, the speaker’s utterance information is regarded as the node of the graph, and the
dialogue relationship information between speakers is regarded as the edge of the graph.

Definition 3 (Problem Definition). For a given multi-modal utterance sequence* , the MCER task
requires using the utterance context information to determine a deep neural network � (D8 ) so that
the output emotion label ~̂8 is as close as possible to the real emotion label ~8 , 8 ∈ {1, ..., !}. Deep
neural networks can solve the optimal parameters by minimizing loss, and its loss is defined as:

min
�

1
!

!∑
8=1

L (~̂8 = � (D8 ), ~8 ), (2)

where ! represents the number of utterances in the dialogue, L is an indicator function.
From the development history and related preliminary definitions of MCER, it can be seen that

the process of MCER mainly includes three aspects: multi-modal feature extraction, multi-modal
feature fusion representation, and emotion classification. The overall process is shown in Figure 5,
and we will provide a comprehensive overview of these three aspects below.

3.3 Multi-modal Feature Extraction
Multi-modal feature extraction (e.g., text, video, and audio) is one of the important techniques for
emotion analysis. In this section, we introduce the process of using feature extraction methods
to perform data preprocessing on text, video, and audio, and list some commonly used feature
extraction methods. As shown in Table 5, we count the multi-modal feature extraction techniques
used by many deep learning methods.

3.3.1 Text Feature Extraction. With the rapid development of deep learning, word embedding
has also been widely used to extract text features. Before embedding, raw text data typically
undergo several preprocessing steps to improve the quality and consistency of the input. These
steps often include tokenization, lowercasing, punctuation, and stop-word removal, and in some
cases, lemmatization or stemming. Some studies also perform syntactic or dependency parsing
to capture the structural relationships between words, which can further enhance the semantic
representation in downstream tasks. Word embedding technology then uses a shallow neural
network to learn the semantic information of words and uses Euclidean distance to measure
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Table 5. Feature Extraction Methods for Text, Video, and Audio Features Used by Different Emotion
Recognition Techniques

Methods Text Video Audio Methods Text Video Audio

THMM [78] Polarized words OKAO Vision OpenEAR CMN [27] TEXT-CNN 3D-CNN openSMILE
SVM [81] Bag-of-words CERT OpenEAR Att-BiLSTM [84] TEXT-CNN 3D-CNN openSMILE
MKL [83] Word2vec CLM-Z openSMILE ICON [26] TEXT-CNN 3D-CNN openSMILE

SAL-CNN [118] Word2vec CLM-Z COVAREP DialogueRNN [75] TEXT-CNN 3D-CNN openSMILE
TFN [145] GLOVE Facet COVAREP DialogueGCN [21] TEXT-CNN 3D-CNN openSMILE
LMF [66] GLOVE Facet COVAREP COIN [151] TEXT-CNN 3D-CNN openSMILE
HFFN [72] GLOVE Facet COVAREP CESTa [123] TEXT-CNN 3D-CNN openSMILE
LMFN [73] GLOVE Facet COVAREP EmoCaps [58] BERT 3D-CNN openSMILE

GME-LSTM [73] GLOVE Facet COVAREP MM-DFN [34] TEXT-CNN 3D-CNN openSMILE
MARN [147] GLOVE Facet COVAREP M2FNet [9] RoBERTa Mel Spectrograms MTCNN
MFN [146] GLOVE Facet COVAREP GraphCFC [55] TEXT-CNN openSMILE 3D-CNN

RAVEN [122] GLOVE Facet COVAREP UniMSE [36] T5 openSMILE 3D-CNN
SWRM [126] BERT Facet COVAREP EmotionIC [142] TEXT-CNN openSMILE 3D-CNN
MCTN [82] GLOVE Facet COVAREP SACL-LSTM [33] RoBERTa openSMILE 3D-CNN
MulT [114] GLOVE Facet COVAREP HyCon [74] BERT Facet COVAREP
MAG [89] BERT Facet COVAREP HGraph-CL [63] BERT Facet COVAREP
ICDN [154] GLOVE Facet COVAREP bc-LSTM [84] TEXT-CNN 3D-CNN openSMILE
AMOA [59] BERT OpenFace 2.0 openSMILE MMMU-BA [19] GLOVE Facet COVAREP
ICCN [109] BERT Facet COVAREP MISA [29] BERT Facet COVAREP

the similarity between words. Unlike traditional one-hot encoding methods, word embedding
technology maps high-dimensional sparse feature vectors to low-dimensional dense vectors. This
reduces computational resource usage and addresses the issue of one-hot encoding’s inability to
capture the semantic gap between words. A commonly used word embedding method is Word to
Vector (Word2vec) [8], which contains two different forms: Continuous Bag of Words (CBOW)
[22] and Skip-gram [13]. CBOW predicts the central word based on the surrounding words, and
Skip-gram predicts the surrounding words based on the central word. Although the above methods
can capture the semantic similarity between words, they require large datasets for training.

Some recent studies use TextCNN [45] and global vectors for word representation (GLOVE) [17]
to extract text features. In addition, large-scale predictive pre-training models such as Bidirectional
Encoder Representations from Transformers (BERT) [71] and Robustly Optimized BERT
Approach (RoBERTa) [44] are often used to capture contextual information through attention
mechanisms.

3.3.2 Video Feature Extraction. Visual feature extraction is mainly used to extract information
such as facial expressions and gestures that contain the speaker’s emotions from the video. In recent
years, deep neural networks have been able to extract deep features from images in an end-to-end
learning manner, avoiding the tedious manual feature extraction. For example, Tran et al. [113]
proposed an effective and efficient 3D-CNN to process video frames containing spatio-temporal
features.
In most modern multi-modal emotion recognition systems, visual preprocessing begins with

frame sampling, where video is typically downsampled to a fixed frame rate (e.g., 25 or 30 frames
per second) to reduce redundancy and maintain temporal resolution [42, 120]. Each frame is then
resized (commonly to 224 × 224 pixels) and normalized using per-channel mean subtraction and
standard deviation scaling (e.g., ImageNet normalization settings) to ensure consistency across
inputs. For facial region detection and alignment, face detectors (e.g., dlib or MTCNN) are employed
to locate the face in each frame, and affine transformations are applied to align facial landmarks
to a canonical pose, improving robustness to head movements and variations in scale or rotation.
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Various open source toolkits are used to extract deep visual features from the aligned facial regions.
For instance, OpenFace 2.0 [2] detects 68 facial landmarks, estimates head pose, facial action units,
gaze direction, and eye-blink frequency, which are strongly correlated with affective states. Facet
further extracts features such as facial muscle activation, histograms of oriented gradients, emotion
intensity scores, and micro-expressions. These features are typically calculated on a frame-by-frame
basis and then aggregated over time using statistical functions (e.g., mean, standard deviation,
and max) or temporal models such as LSTMs. OKAO Vision is a commercial toolkit capable of
estimating smile intensity (ranging from 0 to 100) and eye gaze orientation, while CERT adaptively
captures head pose dynamics and subtle expressions over short temporal segments. These visual
feature extractors are configured with default or task-optimized parameters depending on the
specific dataset conditions (e.g., lighting, camera angle, and facial occlusion).

3.3.3 Audio Feature Extraction. Deep learning has increasingly attracted attention in the field
of audio feature extraction, enabling automatic modeling of acoustic patterns associated with
human emotion. For instance, LSTM networks [127] have been widely applied to model temporal
dependencies in speech, while Poria et al. [84] used CNNs to extract local patterns from audio
signals, followed by feeding the extracted features into emotion classification models.

In recent years, an increasing number of emotion recognition models [75, 116, 161] have adopted
open source toolkits for systematic and standardized audio feature extraction. Commonly used
tools include COVAREP [14], openSMILE [47], LibROSA [106], and OpenEAR [97]. These toolkits
provide frame-level acoustic descriptors based on well-established speech analysis techniques.
Specifically, OpenEAR is capable of extracting a comprehensive set of low-level descriptors, such as
prosodic (e.g., pitch and energy), spectral, and cepstral features, and applies Z-score normalization
to ensure feature comparability across samples. The openSMILE toolkit is often configured with the
INTERSPEECH 2010 or eGeMAPS feature set, extracting Mel-frequency Cepstral Coefficients
(MFCC), pitch, zero-crossing rate, voice intensity, and other prosody-based features. Audio signals
are typically resampled to 16 kHz mono-channel, then segmented using sliding windows (e.g.,
25 ms with 10 ms stride) to generate frame-wise features. LibROSA, a widely used Python-based
audio analysis library, is used to extract 33 frame-level acoustic features, including 20-dimensional
MFCCs, chroma features, and Constant-Q Transform, which captures tonal energy variations.
Similarly, COVAREP provides features such as 12-dimensional MFCC, Maxima DispersionQuo-
tient, Normalized Amplitude Quotient, and Liljencrants–Fant glottal model parameters, which are
valuable for capturing subtle vocal tract changes related to emotional state.

4 Taxonomy of MCER Algorithms
In this section, we present a taxonomy of MCER modeling approaches. We categorize existing work
into context-free modeling, sequential context modeling, distinguishing speaker modeling, and
speaker relation modeling. We briefly introduce each method in the following.

4.1 Context-free Modeling
These are mostly pioneering works on conversational emotion recognition. Context-free modeling
methods aim to learn a feature representation for each sentence, which does not exploit the
contextual information of the sentence [68, 98, 152]. For example, some traditional machine learning
methods (e.g., SVMs [62, 94] and decision trees [10, 51]) is used to extracts the feature representation
of each sentence, and utilize the extracted sentence features to complete emotion classification.
The above process assumes that each sentence is independent and does not influence each other.
We introduce several common context-free modeling methods based on feature fusion below.
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4.1.1 Add. The early fusion method based on addition operation obtains the final emotional fea-
ture representation by weighted summation of different modality features [11]. This fusion method
is simple to operate and requires only a small amount of calculation. However, its shortcomings are
also obvious. It cannot model the context information in a fine-grained manner, and the information
that can be utilized is limited. The formula for implementing the context-free modeling method
using the additive approach is defined as follows:

ℎ4 = G
C + G0 + 0E, (3)

where ℎ4 represents the fused emotional vectors, GC , G0, G E represent the text, audio, and video
vectors, respectively. The Add method is essentially the direct accumulation of different modal
information in the same semantic space, which retains the weighted contribution of each modality
in the corresponding feature dimension. Through summation, the model can automatically adjust
the numerical expression of each modal feature during the learning process, making the information
complementary and improving the overall representation ability.

The Add method is relatively simple and easy to understand and implement. By directly merging
the features of different modalities, the feature information of different modalities can be fully
utilized. For modalities with strong complementarity, the Add method can effectively capture the
correlation between them. However, the features of different modalities may have different scales or
importances. The Add method does not consider the difference in importance between the features
of different modalities, which may lead to information loss or imbalance. Therefore, the Add method
can be considered in scenarios where there is strong complementarity between modalities, limited
computing resources, or requirements for model complexity.

4.1.2 Concatenation. The early fusion method based on the concatenation operation obtains
the final emotion feature representation by concatenating and merging different modal features
[5]. Although this fusion method does not introduce additional calculations, it leads to very high
dimensionality of the data, which makes calculations difficult. Furthermore, it also fails to capture
intra-modal and inter-modal semantic information that is complementary:

ℎ4 =�>=20C
(
[GC , G0, 0E]

)
, (4)

where �>=20C (·) represents the concatenation operation. The concatenation method does not
perform any information compression or mapping on the features of each modality, but directly
concatenate the original information by dimension, theoretically retaining the complete expression
of each modality.

The concatenate method only requires simple vector concatenation operations, without complex
parameter learning or model design. The concatenate method avoids possible information loss
in early fusion. However, the feature dimension after concatenation is the sum of each modal-
ity, which may lead to sparsity and overfitting, especially on small-scale datasets. In addition,
high-dimensional features may increase the computational complexity of subsequent models and
simple concatenation cannot explicitly model the nonlinear relationship between modalities. There-
fore, when the information quality of each modality is high and complementary to each other,
concatenation can effectively retain information.

4.1.3 SVM. SVM is a machine learning algorithm for classification and regression whose opti-
mization goal is to find a hyperplane (a straight line in two-dimensional space, and a hyperplane in
high-dimensional space) that separates samples of different classes. Based on the above research,
Perez-Rosas et al. [81] concatenate multi-modal features as input vectors and use SVM to classify
utterances for emotion. SVM works better for binary classification problems, but is less effective in
multi-classification problems, and is only suitable for training small-scale datasets. The formula of
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SVM is defined as follows:

5 (G) = B86=
(
#∑
8=1

U∗8 ~8 exp

(
− ‖G − I‖2

2f2

)
+ 1∗

)
, (5)

where B86=(G > 0) = 1, B86=(G = 0) = 0, B86=(G < 0) = 1, U∗8 , 1
∗ represent the learnable parameters,

exp
(
− ‖G−I ‖2

2f2

)
represents the kernel function, # is the number of samples. SVM uses a nonlinear

kernel function to implicitly model the nonlinear interaction information between modalities.
Through the kernel function, SVM can find the best classification hyperplane in the high-

dimensional feature space, effectively perform nonlinear classification, and is suitable for high-
dimensional data. When there are fewer training samples, SVM has good generalization ability, but
it is time-consuming for large-scale datasets.

4.1.4 Multiple Kernel Learning. After preprocessing the features of three different modalities,
Poria et al. [83] constructed two different feature selectors to achieve feature dimensionality
reduction. One of the feature selectors is based on circular correlated feature subset selection, and
the other is based on principal component analysis. The above two feature selectors cannot only
eliminate redundant information and noise information but also improve the running speed of the
model. After feature selection and dimensionality reduction, the researchers spliced and merged the
processed feature vectors and trained a classifier using aMulti-kernel Learning (MKL) algorithm
[83]. Based on the previous research work, the authors further propose the convolutional recurrent
MKL [85] model. Convolutional recurrent multi-kernel learning uses a convolutional RNN for
emotion detection, which can extract contextual information. The formula of MKL is defined as:

max
U,V

[
#∑
8=1

U8 −
#∑
8, 9=1

U8U 9~8~ 9K<:; (G8 , G 9 )
]

#∑
8

U8~8 = 0

0 ≤ U8 ≤ �

K<:; =
"∑
:

V: : > 0,

(6)

where ~8 is the true label, U, V are the learnable parameters, " is the feature dimension. MKL
achieves flexible fusion of multi-modal information at the kernel space level through multi-core
combination and weight optimization.

The multiple kernel learning method can combine multiple different kernel functions according
to different data characteristics, which helps to process complex data structures. It is suitable for
processing a variety of heterogeneous data or multi-modal data and can combine information from
different modalities. However, calculating the combination of multiple kernel functions may result
in high computational costs.

4.1.5 Select-additive Learning (SAL) CNN. CNN is a classic neural network in visual tasks
and cannot be directly used for emotion recognition. To solve this problem, Kim et al. [45] proposed
the TextCNN model, and its overall process is shown in Figure 6. To perform multi-modal emotion
recognition, Wang et al. [118] proposed the SAL-CNN model, which first uses multi-modal data
to fully train the CNN, and then uses SAL to improve its versatility and prevent the model from
overfitting during training. The SAL method consists of two phases (i.e., selection and addition).
In the selection phase, SAL preserves important features and removes noisy information from
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Fig. 6. The flowchart of the proposed TextCNN method. Specifically, given text features, the TextCNN
employs convolution filters of different sizes to generate feature maps, and uses 1D-max pooling to expand
the receptive field of feature maps, and further utilizes a MLP to complete emotional prediction. MLP,
Multi-layer Perceptron.

the latent feature representations learned from neurons. In the addition phase, SAL improves the
model’s noise immunity by adding Gaussian noise to the feature representation. The SAL method
improves the generalization performance of deep fusion models.

The formula for extracting text features by CNN is defined as follows:

GC1:= = G1 ⊕ G2 ⊕ . . . G=
28 = 5 (l · G? :?+@−1 + 1),

(7)

where ⊕ represents concatenation operator,l represents convolution filter, 28 represents the feature
representation within a window, 5 (·) represents activation function. Convolutional filters are used
to extract features from all sentences to generate feature maps:

c =<0G?>>;8=6[21, 22, . . . , 2=−ℎ+1] . (8)

The max pooling operation is used to capture the most critical semantic information in the sentence.

Fig. 7. Illustration of the TFN for tri-modal fu-
sion. The feature vectors from the language
(z; ), acoustic (z0), and visual (zE ) modalities are
first augmented with a constant term and then
combined via tensor outer product. This opera-
tion explicitly captures unimodal, bimodal (e.g.,
z; ⊗ z0 , and z0 ⊗ zE ), and trimodal (z; ⊗ zE ⊗ z0)
interactions in a structured tensor space.

It can be seen from the processing flow of the con-
volutional neural network that using CNN to extract
text features does not contain contextual information,
i.e., it is assumed that each sentence is independent of
each other.
The CNN model is relatively simple and has a fast

training speed. It can effectively extract local features
in text, especially when processing long texts. Al-
though CNN handles long texts well, it has poor adapt-
ability to short texts and structured data and may lose
some word order information when processing texts
with sequential order.

4.1.6 Tensor Fusion Network (TFN). As shown in
Figure 7, the tensor-based feature fusion method
mainly calculates the tensor product of different modal
feature representations through the Cartesian product
to obtain the fused tensor representation [79]. There-
fore, the above methods need to first map the input multi-modal feature representation into a
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Fig. 8. The overall flow chart of LFM. LFM mainly performs low-rank decomposition of the learnable
parameters of specific factors of the mode.

high-dimensional space, and then map it back to a low-dimensional tensor space for emotion repre-
sentation. Tensor-based methods are able to capture important high-order interaction information
across time, space, and modality. However, the computational complexity of tensor methods is
very high and grows exponentially, and there is no fine-grained semantic information interaction
between modalities. Zadeh et al. [145] proposed the multi-modal TFN. TFN adopts the method of
tensor fusion, which can simulate the interaction process between the three modalities of text,
audio and video, and effectively fuse multi-modal features. Although TFN can effectively model
information interaction within and between modalities, the model complexity of the TFN method
is related to the dimensionality of multi-modal features and grows exponentially. The formula of
TFN is defined as follows:{

(GC , G E, G0) | GC ∈
[
x;

1

]
, G E ∈

[
xE

1

]
, G0 ∈

[
x0

1

]}
, (9)

where the extra dimension with 1 is used to perform modal interaction. The Cartesian product is
then used to fuse the three modal features as follows:

x< = x; ⊗ xE ⊗ x0

=

[
1 z>0
zE zEz>0

] [
z; z;z>0

z;z>E z;z>E z
>
0

]
,

(10)

where ⊗ represents the outer product, G< represents fused vectors. With the help of tensor outer
products, the interaction information of all levels can be systematically preserved.
Tensor fusion methods use tensor decomposition and high-dimensional fusion techniques to

map multi-modal information into a unified space and capture high-order relationships between
modalities through tensor operations. However, the computational overhead of processing tensor
operations is high, which may lead to computational bottlenecks during training.

4.1.7 Low-rank TFN. On the basis of TFN, in order to more efficiently fuse multi-modal data, Liu
et al. [66] proposed a Low-rank Multimodal Fusion (LMF) method to achieve dimensionality
reduction of multi-modal features, so as to improve the fusion efficiency of multi-modal features
as shown in Figure 8. Low-rank Fusion Multimodal (LFM) has achieved high performance on
many different tasks:

x< =

(
A∑
8=1

w(8 )
0 ⊗ w(8 )

E ⊗ w(8 )
C

)
· x

=

(
A∑
8=1

w(8 )
0 · G0

)
◦

(
A∑
8=1

w(8 )
E · GE

)
◦

(
A∑
8=1

w(8 )
C · GC

)
,

(11)

wherew0,wE, and wC represent the decomposed low-rank learnable tensor. LFM essentially retains
the multi-modal high-order information expression capability of tensor outer product and explicitly
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models the joint distribution and deep semantic dependencies of different modalities through
low-rank approximation.
Low-rank TFN reduces the complexity of the model by low-rank decomposition of tensors,

which can significantly reduce the computational overhead of tensors and reduce memory require-
ments. However, although low-rank decomposition can reduce model complexity, it may lose some
information.

4.1.8 Data Augmentation with Generative Adversarial Networks (GANs). Multi-modal emotion
recognition based on adversarial learning is an advanced direction in this field, which combines the
principles of adversarial learning to improve the accuracy and robustness of emotion recognition
[92, 144]. Next, we introduce the existing overall process of data augmentation based on adversarial
generative networks.

(1) Conditional Generative Adversarial Network (cGAN). cGAN [110] is a variant of GAN
that introduces conditional information to more precisely control the output of the generator. The
core idea of cGAN is to pass additional condition information to the generator and discriminator
during the generation process, thereby generating specific types of data based on given conditions.
The main advantage of cGAN is its ability to precisely control the generation process in order to
generate data that meets the conditional information. The optimization goal of cGAN is defined as:

min
�

max
�
+ (�,�) = Ex∼?data (x) {log� ( [x, y])} + Ez∼?I (z) {log(1 − � ( [� ( [z, y]), y]))}, (12)

where G represents real data, and ~ represents extra information:

L (2��# )
�

= −Ex∼?data (x) {log� ( [x, y])} − Ez∼?I (z) {log(1 − � ( [� ( [z, y]), y]))}

L (2��# )
�

= −Ez∼?I (z) {log(� ( [� ( [z, y]), y]))}.
(13)

(2) Adversarial Autoencoders (AAEs). AAE [50] combines the ideas of autoencoder and GAN.
The main goal of AAE is to make this encoding space more continuous and have better data
generation capabilities while learning a compressed representation of data. The training objective
function of AAE usually includes two parts: one is the reconstruction error of the autoencoder,
which ensures the quality of the encoding, and the other is the GAN loss, which makes the encoding
distribution more continuous and closer to the real distribution. The formula is defined as follows:

L (��� )
�

= −Ez∼?I (z) {log� (z)} − Ex∼?data (x) {log(1 − � (� (x)))}

L (��� )
�

= −Ex∼?data (x) {log(� (� (x)))}

L (��� )
'

= Ex∼?data (x)
{
| |x − '(� (x)) | |2

}
,

(14)

where ?I (I) represents the prior distribution.
(3) Adversarial Data Augmentation Network (ADAN). ADAN [119] includes the following

components: autoencoder '(� (G)), auxiliary classifier� (� (G)), generator� (I,~) and discriminator
� (ℎ). First, ADAN aims to learn a latent representation of the input data G to preserve the emotional
information in it. Second, it attempts to ensure that the generated latent representation is consistent
with the emotional information of the input data by matching the posterior distribution ? (ℎ |I,~)
with ? (ℎ |G). Third, ADAN simultaneously strives to minimize the reconstruction error between
the input data G and its reconstructed version Ĝ to ensure high-quality data reconstruction. The
generator� (I,~) accepts a sample I drawn from an M-dimensional Gaussian distribution and a
one-hot encoding of the emotion label ~ as input, and the goal is to generate samples in the latent
space such that they are indistinguishable from real samples. The discriminator � (ℎ) is optimized
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to distinguish whether the latent vector ℎ comes from real data or from the generator:

L (ADAN)
�

= −Ex∼?data (x) {log� (� (x))} − Ez∼?I (z) {log(1 − � (� (z, y)))}

L (ADAN)
�

= −Ex∼?data (x)

{  ∑
:=1

~
(: )
emo log� (� (x)):

}
L (ADAN)
'

= Ex∼?data (x) {| |x − '(� (x)) | |2}

L (ADAN)
�

= Ex∼?data (x)

{
| |x − '(� (x)) | |2 −

 ∑
:=1

~
(: )
emo log� (� (x)):

}
L (ADAN)
�

= Ez∼?I (z)

{
log(1 − � (� (z, y))) − U

 ∑
:=1

~
(: )
emo log� (� (z, y)):

}
,

(15)

where U determines the contribution of classification error to model optimization. ADAN improves
the authenticity of fused features and the ability to align cross-modal distributions through the
confrontation between the discriminator and the generator.

GANs are able to generate high-quality new samples that are very close to real data through an
adversarial training process. This enables the model to generate new samples with greater diversity
and authenticity, thereby improving the model’s generalization ability. For tasks with scarce data,
especially when there are fewer samples of a specific category, GANs can be used to enhance
the dataset by generating new samples, avoiding the limitations of traditional data augmentation
methods on data diversity and complexity. However, the training process of GANs is often unstable,
and the adversarial process between the generator and the discriminator may cause the gradient to
vanish or explode, resulting in unstable quality of the generated samples.

4.2 Sequential Context Modeling
Context-free modeling is conceptually important and has inspired later research on sequential
context modeling [115]. In particular, sequential context modeling methods consider that contextual
sentences are mutually influential. Sequential context modeling approaches [70, 112, 127] consider
each sentence influenced by its surrounding utterances. The main idea is to generate a feature
representation with rich contextual semantic information by combining its own utterance represen-
tation G8 with the surrounding contextual sentence representation {G8−: , · · · , G8−1, G8+1, · · · , G8+: },
where : represents the context window size. Different from the context-free modeling method, the
sequential context modeling method obtains a better feature representation by setting a memory
network to preserve the context information of the sentence. Taking Figure 9 as an example, a
LSTM or Transformer is used to extract contextual information for three modalities of video, audio,
and text. The sequential context modeling approach plays an important role for many other MCER
modeling approaches.
Tri-modal Hidden Markov Model is a sequence context modeling method, which relies on the

previous state and can effectively capture local dependencies. For example, Morency et al. used
text, video, and audio features for the task of tri-modal emotion analysis, and designed a model to
extract useful information in different modal features [78]. After extracting multi-modal features,
the three modal features are connected and input into a Hidden Markov Chain (HMM) classifier
[78] to learn the emotional state of the input signal. HMM believes that the state of the current
moment is only related to the information of the previous moment, which enables the model to use
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Fig. 9. The flowchart of the proposed contextual modeling approach. Sequential context modeling methods
use LSTMs or Transformer to capture high-level features with rich contextual semantic information among
different modal features.

the context information of the utterance. The formula of HMM is defined as follows:

% (F |G0, G E, GC ) =
�∑
8=1

�∑
9=1

"∑
:=1

% (F, _08 , _E9 , _C: |G
0, G E, GC )

=

�∑
8=1

�∑
9=1

"∑
:=1

% (F |_08 , _E9 , _C: , G
0, G E, GC )

× % (_08 , _E9 , _C: |G
0, G E, GC ),

(16)

where �, �," represent feature vector dimensions for audio, video, and text, F represents the
emotional class, % (_08 , _E9 , _C: |G

0, G E, GC ) represents the confidence of the emotion classification.
Since the true class label is based on the output of the predicted class label F̂1 , the formula of

HMM can be expanded as follows:

% (F |_08 , _E9 , _C: , G
0, G E, GC )

=

�∑
1=1

% (F, F̂1 |_08 , _E9 , _C: , G
0, G E, GC )

=

�∑
8=1

% (F |F̂1, _08 , _E9 , _C: , G
0, G E, GC )

× % (F̂1 |_08 , _E9 , _C: , G
0, G E, GC ),

(17)

where % (F̂1 |_08 , _E9 , _C: , G
0, G E, GC ) represents the probability of predicted label. HMM captures cross-

modal temporal dependencies and synchronization relationships through temporal dependency
structures.
HMM can effectively process sequence data, especially when there are unobservable hidden

states at each timestep. By modeling the hidden state, HMM can capture the time dependency
in the data. Therefore, HMM has strong capabilities in sequence modeling. However, HMM is
based on linear models and cannot effectively handle complex nonlinear relationships in sequence
data. For nonlinear sequence data, the performance of HMM may be limited. In addition, when
processing large-scale data, the computational complexity of HMM training is high, especially
when the parameter space is large, computational bottlenecks may be encountered.
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LSTM is a variant of RNN that can remember contextual information. Specifically, LSTM models
long-distance dependent context through cellular units and can solve the vanishing gradient
problem. Each LSTM consists of input gate 9C , output gate $C , cell state �C , and forget gate 5C :


�̃C
$C
9C
5C

 =


tanh
f

f

f

,)

[
GC
ℎC−18

]
�C =�C � 9C +�C−1 � 5C

ℎC8 =$C � tanh(�C ),

(18)

where f represents activation function. LSTM extracts dynamic information within the modality
by capturing time dependencies.

LSTM can remember information over long time spans and is particularly suitable for modeling
long-term dependencies. However, LSTM still performs worse than other more advanced models
(such as Transformer) in some extremely long sequence tasks. LSTM’s ability to retain memory
over long time spans is also limited. Therefore, LSTM is suitable for most tasks that need to capture
time dependencies, but for very long dependencies or large-scale data, modern models such as
Transformer may provide better performance.

After LSTMwas used in MCER, many other works were proposed to extract contextual emotional
information. Lu et al. [69] proposed a multi-scale LSTM multi-modal emotion recognition model,
which uses LSTM to extract low-level and high-level local emotional features in multi-modal
features. This method can capture subtle changes in complex expressions in a more fine-grained
manner and implement an information feedback mechanism. However, it cannot capture the status
information of the utterance and the status information of the speaker.

Existingmodels ignoremodal alignment and directly fuse information on differentmodal features.
Modal alignment can eliminate the heterogeneity of single-modal features and obtain accurate
emotional representations of different modal features. Based on this current situation, Hou et al.
[31] proposed a semantic alignment network based on multi-space learning, which uses LSTM to
extract emotional features of different modalities and obtains high-level emotional representations
as supervisory signals for modal alignment. This method can capture the global correlation between
different modalities and achieve feature fusion between modalities.

Transformers are another way of modeling sequential context [38, 54, 163]. Transformer’s long-
distance modeling capabilities are far superior to RNNs, and Transformer can achieve parallel
computing. Therefore, existing research on multi-modal emotion recognition based on sequential
context modeling often regards Transformer as an important technology. The implementation
details of Transformer are as follows.
Firstly, video, audio, and text features (i.e., GC , G0, G E) are concatenated into a fusion vector. The

formula is defined as follows:

&, ,+ =�>=20C (GC , G0, G E), (19)

where &, ,+ represent the query vector, key vector, and value vector of multi-modal features, re-
spectively. Transformer automatically captures key modal and key area information by dynamically
assigning weights.
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Secondly, we use a feedforward neural network to perform multiple linear transformations on
& ,  , and + . The formula is defined as follows:

&̃ =�>=20C (&,&

1 , . . . , &,
&

8
, . . . , &,

&
< )

 ̃ =�>=20C ( ,  
1 , . . . ,  ,

 
8 , . . . ,  ,

 
< )

+̃ =�>=20C (+,+
1 , . . . ,+,

+
8 , . . . ,+,

+
< ),

(20)

where< represents the number of linear transformations.
We then perform multi-head attention in parallel to obtain emotion feature representation:

ℎ4038 =

B> 5 C<0G

(
(&,&

8
) ( ,  

8 ))
)

+,+
8

�ℎ403 =�>=20C (ℎ4031, . . . , ℎ403<),

(21)

where �ℎ403 represents the emotion feature vectors.
Finally, position encoding is used to obtain the position information of the emotion sequence:

%� (?>B,28 ) = sin

(
?>B

1000028/3

)
%� (?>B,28+1) = cos

(
?>B

10,00028/3

)
.

(22)

where pos is the index of the 8th sentence, position encoding information is fused into & ,  , and+ .
Transformer uses a self-attention mechanism to process input data, which is independent of the

order of the sequence. Compared with traditional RNNs and LSTMs, Transformer can calculate the
relationship between each input position in parallel, which significantly speeds up the training
process. Due to its parallelism, Transformer is more suitable for training large-scale datasets and
can greatly reduce training time. In addition, Transformer’s Multi-head Self-attention allows the
model to focus on different parts of the input from multiple perspectives, which helps capture
multi-level information. However, since Transformer involves interactions with all positions when
calculating self-attention, its time complexity and space complexity are both high, especially when
processing long sequences, the amount of calculation increases quadratically. For long sequences,
Transformer’s computational and memory requirements are very large. In addition, when the
amount of data is limited, Transformer may not be able to fully exert its advantages, requiring a
large amount of pre-training data and careful tuning.
After Transformer was proposed, many Transformer-based MCER methods were proposed to

model long-distance context dependencies [18, 28]. Previous works failed to model long-distance
dependencies between different modal features. To address this, Yang et al. [131] proposed a multi-
modal speech emotion recognition method using a context Transformer, which enhances the
emotional representation of the current utterance by embedding contextual information. This
method can adaptively learn feature fusion between modalities.

Existing methods struggle to dynamically identify subtle emotional changes in multi-modal and
multi-scale features. To address this, Liu et al. [65] proposed a multi-scale self-attention fusion
emotion recognition method, which uses the self-attention mechanism to extract context-related
dependencies in multi-modal features. Therefore, there is potential to use Transformers to model
long-distance context dependencies. This method combines bc-LSTM and a multi-head attention
mechanism to achieve fine-grained emotional information mining, and uses feature-level fusion
and decision-level fusion methods to experiment with cross-modal feature fusion.
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Fig. 10. The flowchart of the proposed distinguishing speakers modeling approach. The distinguishing
speakers modeling approach designs three GRU states, i.e., a global GRU, an emotional GRU, and a speaker
GRU, which are used to update global context information, emotion category information, and speaker
information, respectively.

4.3 Distinguishing Speaker Modeling
The distinguishing speakers modeling method considers that the speaker’s emotion is not only
related to the global context, but also related to the speaker’s own emotional state. Take Figure 10
as an example, there are three GRU states (i.e., a global GRU, an emotional GRU, and a speaker
GRU). The global GRU is utilized to extract global multi-modal information and speaker’s emotional
state information. The speaker GRU is used to fuse the semantic information with context captured
by the attention mechanism and the speaker’s emotional state information. The emotion GRU
combines the speaker’s emotional state information and global context information to complete
the final emotion classification.

Global GRU captures the contextual semantic information of an utterance by modeling the utter-
ance and speaker states. Each speaker state is used to memorize a speaker-specific representation
of an utterance. By distinguishing the subordination relationship between speakers and utterances,
it is beneficial to model the dependency relationship between speakers and utterances, thereby
enhancing the semantic representation ability of context. The formula of Global GRU is defined as:

6C =�'*G (GC−1, (GC ⊕ @B (GC ),C−1)), (23)

where 6C represents the latent feature representation of the global state, and @B (GC ) represents the
speaker state of the current utterance GC .

Speakers typically reply to conversations based on contextual information from other. Therefore,
speaker GRU extracts the context 2C related to the utterance GC . The formula is defined as follows:

V = softmax(G)C,V [61, 62, . . . , 6C−1])
2C = V [61, 62, . . . , 6C−1]) ,

(24)

where,V is the learnable parameters. First, calculate the attention score of the global state in the
previous C − 1 time. The attention score assigns higher weight to utterances related to utterance GC .
The final context vector 2C is obtained by the dot product of the attention score V and the global
state 6C :

@B (DC ),C =�'*P (@B (DC ),C−1, (DC ⊕ 2C )) . (25)
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The emotional representation et of the utterance DC is obtained by combining the speaker’s state
@B (DC ),C and the utterance 4C−1 at time C − 1. One underlying intuition is that context has a greater
impact on utterance DC , and 4C−1 integrates emotional contextual information from other parties’
states into the emotional representation 4C . Therefore, we use the Emotion GRU unit to model 4C1 ,
and the formula is defined as follows:

4C =�'*� (4C−1, @B (DC ),C ). (26)

The emotion representation 4C that combines context information and speaker status information is
used for the final emotion classification. Distinguishing speaker modeling method combines global
context with individual information to improve understanding of complex information such as
semantics and emotions.

Similar to traditional RNN and LSTMmodels, distinguishing speakers modeling methods have the
ability to capture long-range dependencies. In multi-turn conversations, the previous conversation
content often affects subsequent understanding and generation. Distinguishing speakers modeling
methods can effectively learn these long-term dependencies and help understand contextual infor-
mation. However, in scenarios where the amount of data is small or the conversation data is simple,
distinguishing speakers modeling methods may suffer from overfitting. In particular, when there
are not many conversation rounds in the training dataset, the model tends to remember specific
patterns in the training set and cannot effectively generalize to new data.
In modeling methods based on distinguishing between speakers, Ghosal et al. [20] proposed

Commonsense Knowledge for Emotion Identification in Conversations (COSMIC), which
clarifies the relationship between the speaker and the utterance. It also introduces common sense
knowledge to enhance the emotional understanding of the model. COSMIC can learn a variety of
different prior knowledge (e.g., event relationships and causal relationships), and can distinguish
speaker information and dynamically detect the speaker’s emotional changes.
In view of the fact that existing methods cannot pay attention to the correlation between

utterances and speakers and the lack of interaction between speakers, Zhang et al. [151] proposed
a conversational interaction model, which extracts contextual semantic information and state
interaction information of utterances through stacked global interaction modules. In addition,
this method also implements adversarial feature representation of the model by introducing noise
information. Experimental results prove that adversarial learning can improve the performance of
emotion recognition.

4.4 Speaker Relationship Modeling
4.4.1 GNN for Speaker Relationship Modeling. The speaker relationship modeling method inno-

vatively introduces GNN to capture the speaker’s dialogue relationship information while extracting
sequential context information. Taking Figure 11 as an example, it extracts dialogue relationships
between speakers and inter-speaker dependencies by constructing a speaker relationship graph.

GCN extends convolution operations into graph-structured data to extract structural information.
GCN performs first-order neighbor information aggregation and spectral domain estimation. The
formula of GCN is defined as follows:

N (;+1)
8

= '4!*

(
�̃− 1

2 �̃�̃− 1
2N (; )] (; )

)
, (27)

where] (; ) is the learnable parameters, �̃ = � + �= , �= is the identity matrix, J̃88 =
∑
9 0̃8 9 . N (;+1)

represents the latent feature representations of layer ; + 1.
The steps to apply GCN to the field of multi-modal emotion recognition are as follows. First,

each utterance is represented as a node in the graph, and edge relationships are constructed based
on the context between utterances. We then apply GCN to the constructed dialogue graph for
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Fig. 11. The flowchart of the proposed speaker relationship modeling approach. The speaker modeling method
aggregates dialogue relationship information between speakers by using a graph CNN.

speaker-level information extraction. Through the above process, the model can dynamically learn
the correlation between sentences. According to the definition of Equation (27), our formula for
aggregating surrounding contextual utterance information is deformed as follows:

�
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8
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|NA
8
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\2
�

(; )
8

)ª®¬ , (28)

where,\1 and,\2 are the learnable parameters, NA
8 represents the neighbor node under the

relationship A ∈ R.
The multi-layer convolutional structure of GCN can effectively integrate feature information

from different modalities and enhance the expressiveness of emotional information. Especially
when the amount of information is large, GCN can effectively aggregate the features of each
modality, which helps the accuracy of emotional classification or regression tasks. However, GCN
has difficulties in modeling long-distance dependencies. As the depth of the graph increases, the
problem of over-smoothing will occur during the information propagation process, causing the
representation of nodes to become similar and lose their original distinguishability.
Graph Attention Network (GAT) is a variant of GCN that aggregates surrounding neighbor

node features through learnable weights with an attention mechanism. GAT captures the more
important node features in the graph by calculating the degree of similarity between nodes. The
formula for GAT is defined as follows:
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where U8 9 is the edge weight between node 8 and node 9 .
Similarly, the formula for using GAT to extract conversational relationships between speakers is

defined as follows:
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GAT dynamically distinguishes the importance of neighboring nodes, giving the model stronger
nonlinear expression and local pattern capture capabilities.

In multi-modal emotion recognition, the relationship between modalities may be heterogeneous,
that is, the data of different modalities may be different in nature. GAT can effectively handle
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such heterogeneous graphs because it gives different weights to each type of node through the
attention mechanism, thereby better representing the heterogeneous relationship between different
modalities. However, although the attention mechanism can improve the flexibility of information
aggregation, it may also lead to excessive focus on local information, especially in some tasks that
need to consider the global context. The local weighting of GAT may limit the global learning
ability of the model.

The multi-modal method based on GNN is the current mainstream research, which can consider
context information and speaker relationship information simultaneously [21]. To jointly learn
sequential context, multi-modal interaction, and multi-task representation, Zhang et al. [157]
designed the Multi-modal, Multi-task Interactive Graph Attention Network (M3GAT).
M3GAT simultaneously models context dependencies, multi-modal emotional interactions, and
speaker dependencies. It enables cross-modal feature interaction, captures sequential contextual
semantic information, and establishes task correlations.
Existing graph fusion methods often cause the model to lose important semantic information

and fail to eliminate redundancy. To address this, Li et al. [55] proposed a graph network based on
cross-modal feature complementarity. This method effectively extracts the speaker’s context and
interaction information using multiple hypothesis spaces in the graph. This method eliminates the
heterogeneity between modalities and fuses modal information by performing different message
aggregation on different nodes and edge relationships in the graph, thereby extracting contextual
information and speaker relationship information.
Although existing MCER methods use GCN to model conversational relationships between

speakers. In particular, the most competitive methods model the dependence of conversational
relations between speakers and the importance between conversational relations by using re-
lational GATs. However, existing GCN-based MCER methods do not consider conversational
relationships and sequential information in contextual relationships. Based on the above problems,
Ishiwatari et al. [40] introduced relational position coding in Relationship Graph Attention
Network (RGAT) to provide sequence information. The specific flow chart of RGAT is shown
in Figure 12.

The position encoding formula used by RGAT is defined as follows:

%�8 9A =


<0G (−?,<8=(?, 9 − 8)) A = 1,Fℎ4A4 9 ∈ N 1 (8)
<0G (−?,<8=(?, 9 − 8)) A = 2,Fℎ4A4 9 ∈ N 2 (8)
<0G (−5 ,<8=(5 , 9 − 8)) A = 3,Fℎ4A4 9 ∈ N 3 (8)
<0G (−5 ,<8=(5 , 9 − 8)) A = 4,Fℎ4A4 9 ∈ N 4 (8)

, (31)

where %�8 9A represents the relative position distance between node 8 under relationship type A and
its surrounding neighbor nodes 9 . The maximum relative position distance between nodes is clipped
to ? or 4, which represents the context window size. NA (8) represents the neighborhood of node 8
under relationship type A . To make the position encoding information learnable, Feedforward
Network (FFN) is used to obtain position embeddings.

RGAT improves emotion recognition performance by explicitly modeling complex relationships
within and between modalities. However, if the prior relationship definition is unreasonable (e.g.,
incorrectly connecting irrelevant modalities), the performance may deteriorate.

4.5 Emotion Classification
After obtaining the multi-modal emotion feature representation, the MCER task uses a multi-
layer perceptron and a softmax layer to achieve the final emotion classification. The probability
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Fig. 12. The flow chart of RGAT. RGAT mainly includes dialogue relationship dependency graph, speaker
dependence graph and position coding information. RGAT, Relationship Graph Attention Network.

distribution of emotion categories is as follows:

;C = ReLU(,;4C + 1; )
PC = softmax(,;C + 1)
~̂C = argmax

8

(PC [8]),
(32)

where,; ,, ,1; , 1 are the learnable parameters, PC is the probability distribution of emotion cate-
gories, ~̂C is the predicted labels.

5 Evaluation Metrics
For MCER tasks, there are four commonly used evaluation indicators, i.e., accuracy rate, weighted
average accuracy rate (WA), F1 value, and weighted average F1 value (WF1). These four indicators
are defined as follows.

We assume that # is the number of emotion labels in the dialogue emotion dataset, � 9 represents
the total number of samples of emotion labels in the 9th, 9 ∈ [1, # ].
(1) Accuracy represents the emotion recognition accuracy of the model, and the formula is

defined as follows:

Accuracy9 =

∑o2
==1 �

8
9∑o1

<=1 (
<
9

, (33)
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where o1 is the number of labels on a certain category of emotion. o2 is the number that the model
predicts on a certain category of emotion. �89 means that the 8th sample in the 9th emotionally
predicted correctly. �89 ∈ [0, 1]. (<9 represents the<th sample of the 9th emotion. The larger the
value of �22DA02~ 9 , the better the recognition effect of the model on the 9th type of emotion.

(2) The F1 value is the F1-score of each emotion, and the formula is defined as follows:
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and
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(35)

where � 9
)%

is the number of samples that the model predicts correctly on the 9th category of
emotion, � 9

�%
is the number of samples that the model predicts incorrectly on the 9th category

of emotion, and � 9
�%

is the number of emotions from other categories that the model predicts as
the 9th category of emotion. %A428B8>=(� 9

)%
, �

9

�#
) is the model’s precision on the 9th category of

emotion, and '420;; (� 9
)%
, �

9

�%
) is the recall of the model on the 9th emotion. f1 value combines

the effects of both precision and recall metrics. Usually, the larger the value of f1, the better the
prediction of the model.
(3) Weight accuracy (WA) is the weighted average of the classification accuracy of all emotion

categories. The more samples of the 9 th emotion, the smaller the weight of the sample. The formula
is defined as follows:

,� =

∑o1
<=1 ( 9 ∗ Accuracy9∑#

9=1
∑o1
<=1 (

<
9

. (36)

WA is the classification accuracy of the model combining all emotions. The larger the WA, the
better the model performs on average across all classes.
(4) Weighted F1 (WF1) is the weighted F1 value of all emotion categories. The more samples of

the 9th emotion, the smaller the weight of the sample. The formula is defined as follows:

,�1 =

∑o1
<=1 ( 9 ∗ �19∑#
9=1

∑o1
<=1 (

<
9

. (37)

WF1 is the F1 value where the model integrates all emotions. WF1 is another effective index to
evaluate the model effect. In general, the larger the WF1, the better the average performance of the
model across all classes.

6 Experimental Results
To comprehensively evaluate the performance of different MCER methods, this experiment sys-
tematically analyzes the existing representative methods from multiple dimensions. First, from
the perspective of overall performance, we statistically analyze the comprehensive performance
of each method under the weighted F1. This section focuses on comparing the differences in the

ACM Transactions on Information Systems, Vol. 44, No. 2, Article 47. Publication date: January 2026.



47:28 Y. Shou et al.

effects of different categories of methods (e.g., context-free, sequential context, distinguishing
speakers, and speaker relationship modeling), reflecting the advantages of introducing context
information and speaker dependence mechanisms in improving recognition performance. Secondly,
from the perspective of fine-grained performance, the comparison results of each method in terms
of precision, recall, and AUC are further listed, and the stability and generalization ability of the
model under different evaluation indicators are comprehensively measured. Meanwhile, to deeply
analyze the actual application efficiency of the model, the parameter scale, inference time, and
classification accuracy and F1 score of each method for different refined emotion categories (e.g.,
happy, sad, angry, excited, and fear) are statistically analyzed. This section reveals the tradeoff
between parameter complexity and performance of different methods, and highlights the differences
in the ability to maintain high-precision classification under small parameters and low latency
conditions.
As shown in Table 6, we present the emotion recognition effects of different algorithms on

multiple datasets. In particular, each algorithm uses multi-modal data, and we distinguish dif-
ferent MCER algorithms according to our classification method. Experimental results show that
context-free-based algorithms have the worst performance because they contain the least semantic
information and cannot obtain good emotional feature representation. The MCER algorithm based
on sequential context has significant performance improvement compared to the context-free
algorithm. The performance improvement may be attributed to the sequential context algorithm’s
ability to model the dependencies between contexts and its ability to utilize context information
to improve the feature representation of emotions. The emotion recognition effects of modeling
methods based on distinguishing speaker relationships and sequential context modeling methods
are similar, and both are better than context-independent modeling methods. The performance
improvement may be attributed to the ability of the distinguishing speakers modeling method
to dynamically capture the speaker status information of the utterance and integrate it into the
emotion representation information. The modeling method based on speaker relationship has the
best performance and is currently the most popular modeling method. The modeling method based
on speaker relationship mainly constructs the dialogue relationship between speakers through the
inherent properties of the graph structure, and extracts the dialogue relationship representation
between speakers through GCN. In addition, the speaker relationship modeling method can also
consider the dependency information of the sequential context simultaneously.

To better understand the performance differences among various MCER algorithms, we provide
a detailed analysis of each model’s architecture, focusing on how structural design, parameter
complexity, and feature fusion strategy influence emotion recognition effectiveness. TextCNN and
LFM are classic context-free baselines. TextCNN uses convolutional layers on word embeddings
without any sequential modeling or multi-modal interaction mechanisms. LFM extends this by
incorporating limited modality fusion but still lacks temporal modeling. Their poor performance
(e.g., <50% F1 onMELD) confirms that models ignoring context and interaction structures struggle to
capture emotional semantics. bc-LSTM and bc-LSTM+Att represent sequential context models based
on Bi-LSTM architectures. They process utterances in temporal order, enabling the capture of inter-
utterance dependencies. The addition of attention mechanisms improves performance by focusing
on emotionally salient parts. This explains the consistent performance improvement over context-
freemodels, especially on IEMOCAP. A-DMN leverages a dynamicmemory network, which not only
captures sequential information but also performs iterative attention-based reasoning. Its moderate
parameter size (7.39M) and good F1 performance indicate its strength in temporal reasoning while
maintaining efficiency. DialogueRNN, a foundational distinguishing speakers model, models each
speaker’s emotional state over time using GRUs and a global attention mechanism. It explicitly
distinguishes speaker roles, which improves emotion tracking in multi-speaker conversations.
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Table 6. We Count the Performance of Different Types of Emotion Recognition Algorithms on Publicly
Available Datasets

Approaches Category Inputs Database Performance (%)

SAL [118] Context free T+A+V IEMOCAP/MELD 49.2/58.8
SVM [94] Context free T+A+V IEMOCAP/MELD 48.7/56.4
TFN [145] Context free T+A+V IEMOCAP/MELD 54.2/56.7
LFM [66] Context free T+A+V IEMOCAP/MELD 55.3/56.7
UniMSE [36] Sequential context T+V+A IEMOCAP/MELD 70.7/65.5
bc-LSTM+Att [84] Sequential context T+V+A IEMOCAP/MELD 55.0/56.4
M2FNet [9] Sequential context T+V+A IEMOCAP/MELD 69.9/66.7
CESTa [123] Sequential context T+V+A IEMOCAP/DailyDialog/MELD 67.1/63.1/58.4
CMN [27] Sequential context T+V+A IEMOCAP 56.2
SACL-LSTM [33] Sequential context T+A+V IEMOCAP/MELD/EmoryNLP 69.2/66.5/39.7
Att-BiLSTM [116] Sequential context T+V+A IEMOCAP 62.9
DialogueCRN [35] Sequential context T+A+V IEMOCAP/MELD 66.2/58.39
EmoCaps [58] Sequential context T+V+A IEMOCAP/MELD 71.8/64.0
ICON [26] Sequential context T+V+A IEMOCAP 63.5
DialogueRNN [75] Distinguishing speakers T+V+A IEMOCAP/MELD 62.8/56.8
EmotionIC [142] Distinguishing speakers T+V+A IEMOCAP/DailyDialog/MELD/EmoryNLP 69.5/59.8/66.4/40.0
COIN [151] Distinguishing speakers T+V+A IEMOCAP 65.4
COSMIC [20] Distinguishing speakers T+A+V IEMOCAP/DailyDialog/MELD/EmoryNLP 65.3/58.5/65.2/38.1
RGAT [40] Speaker relationship T+A+V IEMOCAP/DailyDialog/MELD/EmoryNLP 65.2/54.3/60.9/34.4
DialogueGCN [21] Speaker relationship T+V+A IEMOCAP/MELD 64.2/58.1
DAG-ERC [99] Speaker relationship T+A+V IEMOCAP/DailyDialog/MELD/EmoryNLP 68.0/59.3/63.7/39.0
MM-DFN [34] Speaker relationship T+V+A IEMOCAP/MELD 68.2/59.5
GraphCFC [55] Speaker relationship T+V+A IEMOCAP/MELD 68.9/58.9

The weighted F1 score is chosen as evaluation metric.

Its solid performance on both datasets confirms the benefit of dynamic speaker state modeling.
DialogueGCN further advances this by applying graph convolution on utterance nodes, capturing
both temporal and speaker-specific dependencies. It constructs directed conversation graphs and
updates node representations via GCN layers.This architecture achieves strong overall F1, especially
in emotions requiring long-term relational modeling (e.g., frustration and sadness). MM-DFN and
M2ETNet are multi-modal transformer-based models that focus on advanced modality fusion
strategies. MM-DFN integrates modality-specific feature streams using deep fusion networks, while
M2ETNet adds temporal and modality-level attention. These models excel at learning fine-grained
multi-modal interactions, resulting in top-tier performance across most emotion categories. Their
performance, however, comes at the cost of larger parameter sizes and inference time. EmoCaps
introduces a capsule network-based structure to model intra-modal hierarchies and inter-modal
routing, capturing subtle semantic features. It shows strong performance in excited and angry
categories, which benefit from complex vocal and textual cues. CT-Net integrates context and
speaker-specific cues using temporal attention and cross-modal interactions. It performs stably
across emotions with moderate complexity (8.49M). Latent Relation-Graph Convolutional
Network (LR-GCN), the most recent and complex model, constructs a speaker relationship graph
with relational GCN layers. It jointly models sequential context, speaker identity, and emotion
transition. Despite its large parameter size (15.77M) and long runtime (up to 147 s on MELD),
it consistently achieves the best F1-scores across datasets and emotion categories. Its strength
lies in combining graph reasoning, speaker modeling, and contextual information in a unified
framework. DisGCN focuses on distinguishing speakers via graph structure, while SumAggGIN
applies hierarchical aggregation over utterances. These methods show reasonable performance, but
are often outperformed by speaker relationship models, suggesting that modeling explicit speaker
interaction via GCN yields more robust features. Models such as ICON and CNN focus only on
sequential context or modality fusion without graph reasoning. Their lower performance suggests
that lack of explicit speaker modeling limits their ability to capture dialogue dynamic.
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Table 7. We Count the Performance of Different Types of Emotion Recognition Algorithms on Publicly
Available Datasets

Approaches Database Precision (%) Recall (%) AUC (%)

SAL [118] IEMOCAP/MELD 51.3/60.2 50.3/57.4 70.9/76.6
SVM [94] IEMOCAP/MELD 49.1/59.4 47.6/57.9 65.3/73.2
TFN [145] IEMOCAP/MELD 57.3/57.0 55.4/56.6 76.1/72.9
LFM [66] IEMOCAP/MELD 56.2/58.4 57.3/56.1 78.4/71.7
UniMSE [36] IEMOCAP/MELD 68.8/65.2 65.4/64.7 83.6/79.0
bc-LSTM+Att [84] IEMOCAP/MELD 56.7/58.9 57.4/56.3 76.4/71.7
M2FNet [9] IEMOCAP/MELD 67.6/67.4 65.3/66.1 85.1/79.3
CESTa [123] IEMOCAP/DailyDialog/MELD 68.5/64.3/59.2 67.2/65.7/62.3 87.9/76.7/79.2
CMN [27] IEMOCAP 58.4 57.3 75.3
SACL-LSTM [33] IEMOCAP/MELD/EmoryNLP 69.1/65.1/43.8 67.3/64.7/45.6 88.4/79.0/60.1
Att-BiLSTM [116] IEMOCAP 64.5 62.7 80.3
DialogueCRN [35] IEMOCAP/MELD 67.4/61.4 65.3/62.3 84.0/79.3
EmoCaps [58] IEMOCAP/MELD 70.1/64.5 71.2/62.7 86.8/78.5
ICON [26] IEMOCAP 64.3 62.0 83.3
DialogueRNN [75] IEMOCAP/MELD 65.5/58.3 63.7/59.6 80.9/73.6
EmotionIC [142] IEMOCAP/DailyDialog/MELD/EmoryNLP 70.0/62.5/65.6/43.1 68.6/63.3/64.3/46.8 87.2/72.1/75.2/55.3
COIN [151] IEMOCAP 67.8 66.5 85.0
COSMIC [20] IEMOCAP/DailyDialog/MELD/EmoryNLP 66.3/60.2/63.1/43.3 64.2/63.1/60.9/44.5 85.2/74.8/82.2/60.9
RGAT [40] IEMOCAP/DailyDialog/MELD/EmoryNLP 67.8/55.2/61.3/36.3 65.7/56.3/62.4/39.9 84.2/66.9/69.7/52.3
DialogueGCN [21] IEMOCAP/MELD 65.3/57.1 54.2/58.5 83.9/69.2
DAG-ERC [99] IEMOCAP/DailyDialog/MELD/EmoryNLP 69.5/60.7/64.2/41.3 68.4/61.3/62.2/43.8 87.9/72.3/66.1/62.0
MM-DFN [34] IEMOCAP/MELD 67.2/62.5 66.4/63.1 87.2/77.6
GraphCFC [55] IEMOCAP/MELD 69.3/60.4 68.6/58.0 89.1/81.5

The precision, recall, and AUC are chosen as evaluation metric.

To provide a more comprehensive assessment of model performance, we incorporate multiple
evaluation metrics including Precision, Recall, and AUC, in addition to the Weighted F1-score. As
shown in Table 7, we observe that Graph-based models generally outperform traditional context-
free and sequential models across all three metrics. For instance, GraphCFC achieves the highest
AUC (89.18%) and also maintains strong Precision (69.96%) and Recall (60.48%), indicating both
robust classification ability and balanced detection across emotion categories. Among the sequential
context models, architectures like SACL-LSTM and DialogueGCN show competitive performance,
with SACL-LSTM achieving a Recall of 76.47% and AUC of 88.47%. This suggests that incorporating
temporal dependencies and attention mechanisms enhances the model’s sensitivity to subtle
emotional cues. Speaker modeling methods (e.g., EmotiCon, RGAT, DialogueRNN) also perform
well. Notably, EmotiCon achieves a high Recall of 81.63% but slightly lower Precision, suggesting
that the model favors recall-oriented decisions, potentially useful in applications where missing
emotional signals is more critical than occasional false alarms. Interestingly, simpler models such
as CNN or UniMSE display relatively low AUC and Precision, indicating that they struggle to
make accurate decisions across varied threshold settings, reinforcing the importance of context
and multi-modal integration in MCER tasks.
In addition, we also counted the emotion recognition effects of different MCER algorithms on

different emotion categories. As shown in Table 8, on the IEMOCAP dataset, the performance effects
of each algorithm on various emotions are consistent with the overall results introduced previously.
The method based on context-free modeling has the worst effect, with the recognition effect on the
“happy” emotion being less than 50%. In comparison, most of the other three types of algorithms
have exceeded 60%, and some categories of emotions have exceeded 80%. The performance of each
algorithm on the MELD dataset is shown in Table 9. The recognition effects of each algorithm on
most categories of emotions are similar to those on the IEMOCAP dataset. It is important to note
that we found that all emotion recognition methods have poor performance in identifying “fear”
and “disgust” emotions, and the accuracy of some algorithms is even 0%. When we observe the
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Table 8. On the IEMOCAP Dataset, We Counted the Parameters, Running Time, and Emotion Recognition
Effects of Different MCER Algorithms on Different Emotion Categories

Methods
IEMOCAP

Parmas. Running time Happy Sad Neutral Angry Excited Frustrated
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

TextCNN [45] 0.47M 0.96 s 27.73 29.81 57.14 53.83 34.36 40.13 61.12 52.47 46.11 50.09 62.94 55.78
bc-LSTM [84] 1.28M 2.16 s 29.16 34.49 57.14 60.81 54.19 51.80 57.03 56.75 51.17 57.98 67.12 58.97
bc-LSTM+Att [84] 2.17M 2.59 s 30.56 35.63 56.73 62.09 57.55 53.00 59.41 59.24 52.84 58.85 65.88 59.41
CMN [27] 3.85M 4.14 s 25.01 30.34 55.96 62.45 52.81 52.36 61.77 59.88 55.59 60.24 71.16 60.67
LFM [66] 6.24M 6.23 s 25.63 33.14 75.71 78.83 58.52 59.21 64.77 65.26 80.21 71.85 61.14 58.97
A-DMN [129] 7.39M 6.69 s 43.15 50.64 69.47 76.88 63.05 62.92 63.53 56.56 88.34 77.91 53.34 55.72
DialogueRNN [75] 15.17M 20.05 s 25.63 33.11 75.14 78.85 58.56 59.24 64.76 65.23 80.27 71.85 61.16 58.97
DialogueGCN [21] 12.92M 14.18 s 40.63 42.71 89.14 84.45 61.97 63.54 67.51 64.14 65.46 63.08 64.13 66.90
DialogueCRN [35] 6.57M 6.44 s 71.47 51.93 75.82 78.25 66.17 59.86 78.53 64.16 68.95 77.72 54.91 60.l8
SumAggGIN [100] 14.28M 18.79 s 56.74 54.22 86.85 79.17 62.95 65.32 64.64 62.28 76.21 78.43 63.42 61.67
DisGCN [108] 14.16M 17.85 s 71.17 56.92 68.65 76.47 66.63 57.41 74.26 54.35 74.54 76.47 51.14 59.28
MM-DFN [34] 6.29M 6.27 s 40.17 42.22 74.27 78.98 69.13 66.42 70.25 69.97 76.99 75.56 68.58 66.33
M2FNet [9] 9.31M 10.37 s 65.92 60.00 79.18 82.11 65.80 65.88 75.37 68.21 74.84 72.60 66.87 68.31
EmoCaps [58] 13.41M 16.28 s 70.34 72.86 77.39 82.45 64.27 65.10 71.79 69.14 84.50 73.90 63.94 63.41
CT-Net [61] 8.49M 9.06 s 47.97 51.36 78.01 79.94 69.08 65.82 72.98 67.21 85.35 78.74 52.27 58.83
LR-GCN [91] 15.77M 21.06 s 54.24 55.51 81.67 79.14 59.13 63.84 69.47 69.02 76.37 74.05 68.26 68.91

The best result in each column is in bold.

Table 9. On the MELD Dataset, We Counted the Parameters, Running Time, and Emotion Recognition
Effects of Different MCER Algorithms on Different Emotion Categories

Methods
MELD

Parmas. Running time Neutral Surprise Fear Sadness Joy Disgust Anger
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

TextCNN [45] 0.34M 15.25 s 76.23 74.91 43.35 45.51 4.63 3.71 18.25 21.17 46.14 49.47 8.91 8.36 35.33 34.51
bc-LSTM [84] 1.07M 20.29 s 78.45 73.84 46.82 47.71 3.84 5.46 22.47 25.19 51.61 51.34 4.31 5.23 36.71 38.44
bc-LSTM+Att [84] 1.66M 24.28 s 70.45 75.55 46.43 46.35 0.00 0.00 21.77 16.27 49.30 50.72 0.00 0.00 41.77 40.71
A-DMN [129] 6.25M 51.13 s 76.54 78.92 56.24 55.35 8.22 8.61 22.14 24.94 59.81 57.45 1.23 3.45 41.31 40.96
DialogueRNN [75] 14.28M 141.31 s 72.12 73.54 54.42 49.47 1.61 1.23 23.97 23.83 52.01 50.74 1.52 1.73 41.01 41.54
CT-Net [61] 7.69M 61.46 s 75.61 77.45 51.32 52.76 5.14 10.09 30.91 32.56 54.31 56.08 11.62 11.27 42.51 44.65
DialogueCRN [35] 4.78M 40.35 s 70.91 75.73 47.32 47.18 0.00 0.00 34.06 13.29 41.95 49.72 0.00 0.00 41.66 35.69
SumAggGIN [100] 13.26M 122.69 s 78.19 77.82 52.27 54.11 2.17 2.31 35.79 36.43 54.15 55.07 4.05 2.12 48.31 47.22
DisGCN [108] 13.17M 108.71 s 70.84 76.67 42.71 46.13 1.17 1.55 32.08 16.97 50.03 50.17 2.35 1.99 38.25 39.97
MM-DFN [34] 5.33M 45.63 s 78.17 77.76 52.15 50.69 0.00 0.00 25.77 22.93 56.19 54.78 0.00 0.00 48.31 47.82
M2FNet [9] 8.15M 66.54 s 72.88 67.98 72.76 58.66 5.57 3.45 50.09 47.03 68.49 65.50 17.69 25.24 57.33 55.25
EmoCaps [58] 12.31M 101.77 s 75.24 77.12 63.57 63.19 3.45 3.03 43.78 42.52 58.34 57.05 7.01 7.69 58.79 57.54
LR-GCN [91] 14.97M 147.38 s 81.51 80.83 55.42 57.11 0.00 0.00 36.36 36.96 62.21 65.84 7.32 11.07 52.63 54.74

The best result in each column is in bold.

distribution of the dataset, we can find that the MELD dataset has a serious data imbalance problem.
This results in the model’s very poor emotion recognition performance on minority classes.
To comprehensively evaluate the practicality of different MCER models, we compare their

parameter sizes and inference time in addition to their recognition performance. Tables 8 and 9
report the number of parameters and average running time per inference on the IEMOCAP and
MELD datasets, respectively. The results show that lighter models such as TextCNN and bc-
LSTM possess significantly fewer parameters (0.47M and 1.28M, respectively) and exhibit faster
inference times (0.96 s and 2.16 s). However, their performance across most emotion categories
tends to be lower compared to more complex architectures. In contrast, recent transformer-based
or graph-enhanced models, such as DialogueGCN, MM-DFN, M2ETNet, and especially LR-GCN,
require substantially more parameters (up to 15.77M) and longer inference times (up to 21.06 s for
IEMOCAP and 147.38 s for MELD), but consistently achieve better recognition performance. This
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observation highlights a common tradeoff between model complexity and computational efficiency.
While heavier models are better suited for applications where accuracy is the priority, lightweight
models may be more favorable for real-time or resource-constrained deployment scenarios. In
particular, LR-GCN achieves the best overall performance on both datasets, ranking highest in
multiple emotion categories, albeit with the largest parameter count and slowest inference time.
This suggests that while model complexity improves expressive power, there is a pressing need to
explore model compression, pruning, and quantization to improve the feasibility of deploying such
models in real-world applications.

7 Applications of Multi-modal Conversational Emotion Analysis
Emotion recognition is a method of applying natural language processing, machine learning, and
deep learning techniques to multi-modal data such as text, video, and audio to identify and analyze
the emotional state expressed in multi-modal data [11]. Therefore, analyzing and studying the
problem of emotion recognition has broad application value in many practical application scenarios.

7.1 Social Media Analysis
MCER has many broad applications in social media analysis [153]. The most typical application
is product improvement and innovation, that is, by analyzing user comments and feedback on
social media, companies can understand users’ preferences and dissatisfaction with products. This
helps companies tweak product designs, improve functionality, and develop products that better
meet user needs. Therefore, businesses can employ emotion analysis techniques to improve their
products. In addition, emotion analysis can also help advertisers understand users’ emotional
attitudes towards advertisements, thereby optimizing advertisement content and strategies, and
improving advertisement effectiveness. For example, FaceReader [53] can measure people’s emo-
tional responses to different advertising creatives, providing valuable insights into the effectiveness
of emotional appeals, humor, or shock value. With an 89% recognition rate for static images and an
80% recognition rate for animated expressions, FaceReader provides a reliable method for assessing
the emotional impact of advertising imagery.

7.2 Public Opinion Analysis
Multi-modal conversational emotion analysis also has a wide application value in opinion mining,
which can help mine and analyze people’s opinions and emotions expressed in text, video, and
audio [111]. For example, emotion analysis of online public opinion on emergencies can better
understand public emotion and conduct effective crisis management. ECR-BERT [117] proposed
a BERT-based model that integrates emotion-cognitive reasoning mechanisms, enabling more
accurate emotional understanding in complex scenarios such as public opinion analysis during
sudden events. Compared with the standard BERT model, ECR-BERT achieved absolute average
accuracy improvements of 0.82%, 1.74%, 0.98%, and 1.37% across different datasets. This enhanced
emotional recognition capability helps to more precisely capture public sentiment dynamics,
providing valuable support for timely public opinion monitoring and effective crisis management.

7.3 Recommendations Systems
Multi-modal conversational emotion analysis in recommender systems can help personalize rec-
ommendations more in line with users’ emotions and preferences [12]. For example, the recom-
mendation system can recommend products that users are more interested in according to the
emotional changes of consumers, and can perform emotion analysis on multi-modal data of user
evaluations to realize real-time early warning and disposal of negative product evaluations. For
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example, Agent4Rec [150] displays four movies on each recommendation page, and the agent will
decide whether to continue to the next recommendation page or exit the recommendation system
based on their satisfaction. After the agent exits, the system will ask him to give a satisfaction score
of the recommendation system, ranging from 1 to 10. Ratings above 3 are regarded as signals of
liking. After the entire simulation is completed, the following multi-faceted indicators are collected:
average viewing rate, average number of likes, average like ratio, average number of exit pages,
and average user satisfaction score. The satisfaction score of random recommendations is 2.93,
while the satisfaction score of the recommendation algorithm based on emotional preferences is
3.85. The experimental results prove the effectiveness of emotion recognition technology in the
field of social media.

7.4 Medical Care
Multi-modal conversational emotion analysis plays an important role in many aspects in the field of
health care [95]. It can help medical institutions and doctors better understand the current emotional
state of patients, so as to give better treatment plans. For example, by performing emotion analysis on
unstructured data such as patients’ medical records, consultation conversations, online consultation
texts, or social media posts, the medical system can identify patients’ potential emotional states,
thereby providing supplementary psychological information for clinical diagnosis [107]. In addition,
in mental health assessments, emotion analysis can be used to detect early signs of depression
tendencies or anxiety symptoms, which helps to achieve early screening and early intervention. In
chronic disease management, the system can continuously monitor patients’ emotional responses
to treatment plans and help doctors dynamically adjust treatment strategies.

7.5 Financial Field Analysis
In the field of financial analysis, emotion analysis can help financial practitioners and investors
better understand the emotional state of the market and predict market trends, thereby helping
investors make correct investment decisions [18]. For example, the improved GPT model [128]
combined with the emotion analysis module achieved an accuracy of 88.34% in the financial emotion
classification task, which is significantly better than the original GPT model (74.57% accuracy) that
did not use emotion information. The results show that emotion factors can provide the model with
richer semantics and market tendency judgment basis, further verifying the actual effectiveness
and research value of emotion analysis in financial text understanding and trend prediction.

7.6 Social Robot
MCER has many potential applications on social robots, which can enhance the capabilities of
social robots and make them more intelligent and humane [52]. Social robots can use multi-modal
emotion recognition to sense the emotional state of the users they interact with. This includes
identifying users’ facial expressions, voice emotions, text emotions, and other modal emotional
signals [49]. The robot can then adjust its interaction to better meet the user’s emotional needs,
providing support, comfort or entertainment. In addition, social robots can use MCER to better
understand users’ needs and emotional states to provide personalized suggestions and assistance.
For example, emotion analysis can detect in real time the user’s anxiety, frustration, or fatigue
during the interaction process. The chatbot can then adjust its language response strategy and
provide more soothing tone and suggestions, thereby significantly improving the user’s trust
and satisfaction. After the introduction of the emotion perception mechanism, the user’s positive
feedback rate on the chatbot has been significantly improved [41].
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8 Privacy and Security of Multi-modal Data
With the widespread application of MCER, privacy concerns have become increasingly critical [136].
Unlike unimodal data, multi-modal data often involves sensitive personal information spanning
facial expressions, voice patterns, textual content, and physiological signals. These data types may
reveal not only the user’s identity but also intimate emotional states, behavioral tendencies, and
even mental health conditions. Consequently, the risk of personal emotional information leakage
poses a significant challenge to the secure deployment of these technologies. To address these issues,
privacy protection must be considered at every stage of system design and data processing. First,
data anonymization techniques should be applied to remove or obfuscate identifying information,
such as name, face, or unique voice features [24, 134]. Second, data encryption techniques [93,
159] should be used to ensure protection against unauthorized access to sensitive data, whether
in storage, transmission, or computation. In a distributed environment, federated learning [160]
provides an effective framework in which model training is performed locally on the user’s device
and only encrypted model updates are shared with a central server, thereby protecting the privacy
of the original data. Moreover, differential privacy [130] can be introduced to inject calibrated
noise into feature representations or model outputs, reducing the possibility of individual re-
identification. In scenarios where multiple institutions or agents collaborate, secure multi-party
computation and homomorphic encryption offer mechanisms for privacy-preserving joint model
training or inference, albeit at the cost of computational efficiency [130]. Finally, privacy-preserving
representation learning is gaining traction, where adversarial training or disentangled learning
techniques are used to suppress sensitive attributes (e.g., user identity) while preserving task-
relevant emotional information [15].

9 Research Challenges
Although deep learning technology has promoted the prosperity of MCER tasks, many scholars
have proposed many state-of-the-art algorithms. However, building an accurate MCER model still
faces challenges.

9.1 Scarcity of Training Data
MCERmodels require sufficient and comprehensive emotional samples as a basis to achieve accurate
prediction or classification of emotions. The existing multi-modal benchmark datasets IEMOCAP,
MELD, and SEMAINE have only 11,098, 5,810, and 394 utterances, respectively. Unfortunately,
although we can easily collect large amounts of multi-modal conversation data from channels such
as social media, the emotion labeling process is often expensive and time-consuming. In addition,
the collected multi-modal data inevitably has problems such as ambiguous labels or multiple labels,
which makes it a great challenge to obtain sufficient multi-modal labeled data, which in turn leads
to the scarcity of multi-modal training data. Therefore, the scarcity of training data limits the
effectiveness of current MCER models.

9.2 Data Is Heterogeneous and Noisy
MCER models need to fully eliminate heterogeneity and noise information between modalities to
achieve accurate prediction or classification of emotions. Multi-modal data is naturally hetero-
geneous, and features of different modalities have huge differences in processing methods and
representation forms. Additionally, multi-modal conversation data often contains a large amount of
redundant or noisy information. The emotion is typically determined by a small amount of consis-
tent key information, such as specific words in a sentence, a particular frequency band in speech,
or a distinct expression in a video. Even in some extreme cases, part of the modal information is
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basically unavailable under noise interference, such as ambiguous sentence expressions, noise in
the speech, blocked expressions, and so on. Therefore, the heterogeneity and noise of data limit the
effectiveness of current MCER models.

9.3 Unbalanced Data Distribution
Multi-modal dialogue data samples have serious imbalance problems, and the unbiased learning of
the model is seriously interfered with. The MCER model is based on cross-modal feature fusion,
driven by emotion category sample data, and is easily affected by the number of emotion category
samples. However, multi-modal conversation emotion data naturally suffers from the problem of
category sample imbalance. A few emotion category samples account for a larger proportion, while
most emotion category samples account for a small proportion. For example, in the MELD dataset,
the “fear” emotion only accounts for 1.91% of the total samples, and the “disgust” emotion only
accounts for 2.61% of the total samples. A similar sample distribution also exists on the benchmark
dataset SEMAINE. Small samples are difficult to drive unbiased learning of the model, which
seriously affects the model’s prediction accuracy for small sample emotional categories. Therefore,
the unbalanced sample distribution limits the effectiveness of current MCER models.

9.4 Consistent Semantic Association
MCER requires the model to learn the consistent semantics across modalities to filter out noise and
eliminate heterogeneity. This is essential for building an accurate multi-modal emotion recognition
model. However, the consistent semantic association in multi-modal conversation is more complex.
It is not only related to the multi-modal context but also influenced by factors such as the conver-
sation scene, the speaker’s emotional inertia, and their responses. In addition, multi-modal data
are heterogeneous, each modality has differentiated representation and distribution characteristics
in space, and some consistent semantic associations are hidden in the feature distribution space
between modalities. Therefore, efficiently performing consistent semantic association is the primary
issue that needs to be considered at the model level.

9.5 Complementary Semantic Capture
MCER models need to establish accurate and consistent semantic associations and capture comple-
mentary semantic features between modalities, which can expand the emotional representation
capabilities of a single modality. However, unlike consistency semantics, complementary seman-
tics represent differences between modalities, and this difference may contain noise components.
Therefore, consistency semantics and complementarity semantics are a pair of game entities, and
how to balance the relationship between them is another issue that needs to be considered at the
model level.

9.6 Multi-model Collaboration
Multi-model collaboration is the third challenge faced at the model level in building accurate
MCER models. MCER often requires the collaboration of multiple models to complete tasks, such
as feature extraction models and feature fusion models. However, existing methods often perform
task collaboration from the data level and ignore the collaborative relationship between models.
Therefore, in order to achieve ideal synergistic results, not only the respective characteristics of the
modes and their interrelationships need to be considered, but also the synergistic relationships
between models need to be considered.
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10 Future Work
10.1 Multi-modal Conversation Data Generation
MCERmodels require sufficient and comprehensive emotional samples as a basis. When sample data
is scarce, training MCER models without causing overfitting or underfitting problems is extremely
challenging. However, the sample size of existing benchmark datasets is relatively small, and there
is a common problem of data scarcity. Multi-modal dialogue data generation can effectively alleviate
this problem. However, the distribution of multi-modal conversation data is more complex, and
traditional single-modal data generation or cross-modal data generation models cannot meet the
requirements. Therefore, there is an urgent need to solve the problem of collaborative generation
of multi-modal conversation data.
To solve the problem of ensuring strong correlation and synergy among modalities in Multi-

modal Conversation Data Generation, researchers have designed advanced generative frameworks
that explicitly model the cross-modal dependencies during the generation process. One represen-
tative approach leverages Variational Autoencoders (VAEs), which map different modalities
into a shared latent semantic space, allowing the model to capture deep inter-modal relationships
and generate coherent multi-modal conversational data through joint reconstruction. This shared
representation ensures that generated text, audio, and visual signals are semantically aligned and
contextually consistent. In addition, GAN-based frameworks introduce modality-specific discrimi-
nators alongside a joint discriminator to constrain both the individual quality and overall coherence
of generated modalities. By adversarially optimizing the generator to produce modality-consistent
outputs, these methods effectively enhance cross-modal correlation in generated conversations.
Recently, diffusion models have shown strong potential for multi-modal data generation by mod-
eling the complex joint distribution of multiple modalities through iterative denoising steps.
Diffusion-based methods [30] can incorporate cross-modal conditional signals at each generation
step, ensuring that the evolving text, audio, and visual outputs remain temporally synchronized
and semantically coupled.

10.2 Multi-modal Feature Deep Fusion
Multi-modal feature fusion is crucial to the MCER task. The fused feature vector can represent the
consistent semantics and complementary information between modalities. However, many different
information interactions exist between multi-modalities, and many consistent or complementary
features are hidden in multiple time series or local spatial correlations. Since multi-modal conver-
sation data is heterogeneous and contains noise, there are significant differences in the temporal
period and spatial distribution of different modal features, and the spatiotemporal importance
between modalities is dynamic. Currently, few works consider this difference, and more efforts are
still needed for deep fusion of multi-modal features.
To solve the above problems, on the one hand, the deformable temporal convolution can be

used to allow each modality to dynamically sample the most relevant timestep based on its own
features. Then, the locality-aware attention is utilized to focus on the strong correlation of local
areas in space. The time period misalignment and local information loss caused by heterogeneity
are solved before fusion. On the other hand, to achieve cross-modal alignment, a dynamic weighted
alignment mechanism can be introduced to calculate the dynamic weights of consistency and
complementarity between modalities for each moment or local spatial area. Through the cross-
modal attention module, the consistency score and complementarity score of each modality at
the current spatiotemporal point are calculated. Then, the dynamic gating mechanism is used to
adaptively adjust the contribution weight of each modal feature during fusion according to the
score to avoid information redundancy or key feature loss caused by static weighting.
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10.3 Unbiased Emotional Learning
Many benchmark datasets in the field of MCER suffer from serious sample category imbalance,
that is, the minority emotion category contains a large amount of data, while the majority category
emotion only contains a small amount of data. In the case of unbalanced data, the existing models
tend to be biased towards fitting the minority emotion with a large amount of data, and the learning
is insufficient on the majority emotion with a small amount of data, which leads to the model
being in a small sample emotion category, resulting in the recognition accuracy is poor. Thus,
the small-sample problem in multi-modal dialogue emotion recognition urgently requires further
research.

To effectively solve the problem of small samples in MCER, we can start from three dimensions:
enhancing samples, optimizing model structure, and adjusting training strategies, and build an
integrated framework of data augmentation, prototype modeling, and category balance training.
Specifically, at the data augmentation level, the emotional sentences of small sample categories are
combined with context to reconstruct new samples, and the diversity of small sample categories
is improved while ensuring the rationality of the context. At the prototype modeling level, a
multi-modal prototype center is constructed for each emotion category, and the distance between
samples and prototypes of the same type is shortened by contrastive loss, and the distance from
prototypes of other types is pushed away to alleviate the problem of inter-class imbalance caused
by differences in sample size. At the category balance training level, the category balance focal
loss or label distribution-aware margin loss is used to dynamically adjust the loss penalty items
of each category. Without changing the overall training process, the model’s attention to small
sample categories is improved.

10.4 Incomplete MCER
Each modality is not always available in real-world scenarios, which can lead to modal incom-
pleteness problems. For example, the voice contains much noise, the expression is blocked, the
light is dim, and so on. At this moment, some modal information becomes unavailable due to noise
interference. Modal integrity requirements reduce the applicability of MCER methods. Therefore,
cross-modal content recovery methods based on deep learning should continue to be developed to
achieve MCER in missing modalities.

To solve the common problem ofmissingmodalities inMCER, researchers have proposed a variety
of modal restoration methods in recent years, aiming to maintain the discriminative ability of the
model when somemodalities are unavailable. A common type of method is based on autoencoders or
VAEs, which reconstruct the representation of themissingmodality using the available modalities by
learning the mapping relationship between different modalities. Another type of method uses GANs
to constrain the generated features by introducing discriminators to improve the authenticity and
diversity of modality completion. There are also studies that use knowledge distillation strategies
to guide student models to maintain performance in modality-incomplete scenarios with the help
of teacher models trained under complete modalities. Recently, the development of generative
models has also provided stronger modeling capabilities for modality restoration. Diffusion models
have strong distribution modeling and step-by-step optimization capabilities by modeling the
reverse generation process from noise to data. They perform well in conditional generation tasks
and are suitable for high-quality restoration of missing modalities. Meanwhile, flow-based models
accurately model the joint distribution of modalities through reversible transformations and support
conditional sampling to achieve missing modality completion.
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10.5 Zero-shot MCER
Affected by factors such as the complexity of emotions and the high cost of labeling, it is difficult
to fully label some emotional samples. Furthermore, with the rapidly growing personal emotion
annotation space, real-world emotion recognition systems may frequently encounter unseen
emotion labels.Therefore, improving the generalization performance of emotion recognition models
is an issue that needs to be considered. Deep methods utilizing zero-shot learning are expected to
achieve better multi-modal dialogue emotion recognition.
In recent years, large-scale pretrained models, especially cross-modal models such as CLIP

[88], Flamingo [1], GPT-4V [132], and so on, have brought a new paradigm for zero-shot multi-
modal emotion recognition. These models usually have strong multi-modal alignment capabilities
and natural language understanding capabilities, and can achieve category expansion through
contrastive learning or generative modeling of text-image or text-audio. For example, CLIP builds
a shared embedding space through image-text contrastive learning, which can convert emotion
labels into natural language descriptions to achieve open-class emotion recognition. Audio-text
models such as Whisper [6] and AudioCLIP [23] are also used to map speech emotion embeddings
to language space to achieve zero-shot emotion transfer. In addition, the generative capabilities
of multi-modal large models [64] can transform emotion recognition tasks into natural language
generation or question-answering problems, and complete the understanding and prediction of new
emotion categories under unsupervised or weak supervision. Combined with strategies such as
prompt engineering, instruction tuning, or emotionally informed prompts, the model can generalize
to new emotion categories with only label descriptions.

10.6 Multi-modal Conversation Multi-label Emotion Recognition
In multi-modal conversation scenarios, existing emotion recognition models usually use a single-
label supervised learning. Due to the ambiguity of emotions, emotion recognition in real life is often
a multi-label task. The single-label requirement greatly limits the application scenarios of MCER.
Therefore, the multi-label emotion recognition problem in multi-modal conversation scenarios
should be considered in future work.
To address the multi-label expression problem in MCER, researchers have proposed a range of

targeted solutions to capture the complexity and coexistence of emotions within conversations. A
common approach is to replace traditional Softmax classification with Sigmoid activation, enabling
the model to independently predict the probability of each emotional label and naturally support the
coexistence of multiple emotions such as sadness and anger. In addition, label dependency modeling
is widely adopted, where the statistical co-occurrence patterns of emotions are explicitly captured
using techniques such as label graphs or GNNs, ensuring semantic consistency and reducing
contradictory label outputs. To further improve robustness in real-world noisy environments,
uncertainty-aware mechanisms have been integrated into multi-label frameworks, allowing the
model to dynamically adjust label confidence based on the reliability of different modalities.
Moreover, some studies introduce auxiliary tasks, such as emotion intensity regression or label
quantity estimation, to provide richer supervision signals and enhance the model’s ability to
represent complex emotional states. Recently, researchers have also explored label-specific attention
mechanisms, dynamically modulating the contribution of each modality for different emotional
labels, which effectively improves the multi-label recognition accuracy under modality imbalance
or incomplete scenarios.

10.7 Multi-modal Emotion Recognition in Dynamic Dialogue Scenarios
Real-world conversations are inherently dynamic, with speaker roles changing depending on the
context and interpersonal relationships evolving over time. However, most current MCER methods
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rely on static modeling frameworks that fail to capture these real-time dynamics. To address this
gap, future research should focus on developing models that can adapt to such temporal and
structural variability in conversation.

One promising direction is the use of time-series modeling techniques. Methods such as Temporal
Convolutional Networks [39, 101] and Hierarchical RNNs [96, 162] can be employed to model
frame-level and utterance-level emotional fluctuations across a dialogue sequence.These models can
maintain temporal dependencies and detect sudden or gradual emotional transitions by capturing
long-range contextual signals. For example, by feeding sequential utterance embeddings into a TCN
layer with causal convolutions, the model can learn how earlier statements influence emotional
progression. Another critical aspect is the dynamicmodeling of speaker interactions. Dynamic GNNs
[124, 133, 156] provide a powerful framework to represent evolving dialogue structures. Here, each
node in the graph represents a speaker utterance or a speaker entity, and edges represent context-
aware relationships (e.g., speaker interactions and turn-taking). Unlike static GCNs, dynamic GNNs
update node and edge embeddings over time based on incoming utterances and relational changes.
For instance, Temporal Graph Networks and EvolveGCN can learn temporal node representations
by integrating recurrent modules that evolve the graph state as the dialogue progresses. These
approaches allow the system to adjust for speaker role shifts and emotional influence propagation
between participants. Additionally, speaker-role modeling mechanisms can be introduced by using
speaker-aware encoders that condition emotion predictions on dynamic role embeddings. For
example, using attention modules that incorporate speaker identity, conversational history, and
position in the dialogue tree can help model role-specific emotional behaviors. Coupled with
adaptive memory modules (e.g., Transformer-based memory networks), the system can retain
evolving emotional cues and speaker traits across multiple turns. Finally, hybrid systems that
combine reinforcement learning for emotion trend tracking and graph-based relational reasoning
can adaptively adjust prediction strategies based on dialogue context evolution. This provides a
more robust mechanism for handling emotional ambiguity and inter-speaker dynamics in realistic,
multi-turn conversations.

10.8 Lightweight and Efficient MCER
Although most existing MCER models have demonstrated strong emotion recognition performance,
their computational complexity and resource requirements hinder deployment in practical appli-
cations, especially on resource-constrained platforms such as mobile devices, wearable devices,
and embedded systems. In real-world scenarios, real-time emotion recognition is essential for
applications such as mobile assistants, edge-based healthcare monitoring, and socially interactive
robots. Therefore, designing lightweight and efficient MCERmodels is critical for practical adoption.

To achieve real-time emotion recognition, the deployment efficiency of the model on resource-
constrained devices (such as mobile terminals and embedded systems) must be solved. One of the
key paths is to compress and optimize the emotion recognition model so that it can significantly
reduce the computational overhead while maintaining high recognition accuracy. First, model
compression can transfer the predictive ability of a large model (i.e., teacher model) trained on
a high-performance platform to a smaller model (student model) with a more compact structure
through methods such as knowledge distillation. During the distillation process, the student model
not only learns the original labels of the training data, but also learns the “soft labels” output
by the teacher model, that is, the probability distribution of each emotion category. This method
allows the small model to learn richer feature representations. The compressed model greatly
reduces the number of parameters and inference delay without sacrificing too much accuracy.
Secondly, pruning technology mainly evaluates the importance of certain neurons or channels in the
network to the final output and prunes the less influential parts. Pruning is usually divided into two
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categories: structured pruning and unstructured pruning. Structured pruning can remove the entire
convolution kernel, channel or layer. This method is more hardware-friendly and easy to accelerate
and parallelize. Unstructured pruning performs sparse processing at the weight level. Although it
has more detailed control over precision loss, it requires special sparse matrix acceleration support
in actual deployment. Through multiple rounds of pruning and fine-tuning, the model complexity
can be further reduced and the inference speed can be improved. Finally, the quantization method
converts the original floating-point model parameters and intermediate activation values into a
lower bit-width representation, such as compressing from 32-bit floating points to 8-bit integers or
even lower bit widths. Quantization can significantly reduce the storage requirements and memory
bandwidth consumption of the model, while fully utilizing the integer operation acceleration
capabilities of the hardware on many mobile and edge computing devices. In order to avoid the
decline in recognition effect due to reduced accuracy, strategies such as quantization-aware training
or post-training quantization are usually used to fine-tune the weights and activation distributions
to maintain the accuracy of emotion recognition.

11 Conclusion
This article reviews the latest research results in the field of MCER. To allow readers to implement
emotion recognition tasks better, we have collected popular datasets in this field and given relevant
download links. Since text, video, and audio are unstructured data that cannot be directly input into
a computer for computation, we summarize some publicly available feature extraction methods.
We divide emotion recognition methods into four categories, i.e., context-free modeling, sequential
context modeling, distinguishing speaker modeling, and speaker relationship modeling. This article
further discusses the challenges faced by existing methods and future research directions. According
to the review of existing work, it is found that multi-modal emotion recognition mainly improves the
effect of emotion recognition by modeling intra-modal and inter-modal complementary semantic
information. We hope this review can shed some light on developments in this field.
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