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A B S T R A C T

Remote sensing segmentation has a wide range of applications in environmental protection, urban change de-

tection, etc. Despite the success of deep learning-based remote sensing segmentation methods (e.g., CNN and 

Transformer), they are not flexible enough to model irregular objects. In addition, existing graph contrastive 

learning methods usually adopt the approach of maximizing mutual information to keep the node representations 

consistent between different graph views, which may cause the model to learn task-independent redundant in-

formation (i.e., information unrelated to the downstream task, including both redundancy and noise.). To tackle 

the above problems, this paper treats images as graph structures and introduces a novel Graph Information 

Bottleneck for Remote Sensing Segmentation (GIB-RSS) architecture. Specifically, we construct a node-masking 

and edge-masking graph view to obtain an optimal graph structure representation, which can adaptively learn 

whether to mask nodes and edges. Here, the optimal graph structure representation refers to the refined node and 

edge embeddings derived from the masked graph views under the GIB objective, where task-relevant structural 

information is preserved while task-irrelevant redundancy and noise are suppressed. Furthermore, this paper 

innovatively introduces information bottleneck theory into graph contrastive learning to maximize task-related 

information while minimizing task-independent redundant information. Finally, we replace the convolutional 

module in UNet with the GIB-RSS module to complete the segmentation and classification tasks of remote sens-

ing images. Extensive experiments on publicly available real datasets demonstrate that our method outperforms 

state-of-the-art remote sensing image segmentation methods.

1. Introduction

Remote sensing segmentation has been widely developed in a variety 

of scenarios including, land cover mapping, environmental protection, 

and road information extraction, which require high-quality feature rep-

resentations to be learned from irregular objects (e.g., roads, trees, etc.) 

[1,2]. In recent years, thanks to the powerful modeling ability for image 

data, convolutional neural networks (CNNs) [3] and Transformer with 

attention module [4,5] have provided an effective way to extract the un-

derlying visual features and multi-scale features of images and exhibit 

guaranteed performance in remote sensing segmentation [6].

Although encouraging segmentation performance has been achieved, 

CNN-based and Transformer-based remote sensing segmentation mod-

els suffer from some limitations. Taking Fig. 1 as an example, Fig. 1(a) 

shows the CNN-based image modeling method, which treats the image 

as a regular grid structure. Fig. 1(b) shows the Transformer-based image 

modeling method, which regards the image as a continuous sequence

structure. Both of the above methods are unable to model irregular ob-

jects [7]. As shown in Fig. 1(c), we argue that both grid and sequence

structures are special cases of graph structures and that GNN-based ap-

proaches [8–11] are capable of modeling data in non-Euclidean spaces. 

For instance, the vision GNN proposed by Han et al. [7] extracts low-

level information about the image by treating the image as a graph 

structure. Therefore, we propose a GNN-based remote sensing image 

modeling method for multi-scale feature extraction of irregular objects. 

However, the convergence speed and convergence effect of GNN are 

unsatisfactory [12].

Recent advances in graph contrastive representation learning have 

demonstrated that it can improve model convergence and enhance 

model robustness [13]. Nevertheless, the existing methods suffer 

from two limitations. First, most existing methods perform feature 

augmentation by randomly masking graph views to obtain better node 

representations. However, randomly masking nodes and edges may
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Fig. 1. Illustrative examples of different modeling approaches for an image. (a) 

CNNs view images as regular grid structures (i.e., squares and rectangles). (b) 

Transformer treats images as a continuous sequence structure. (c) We believe 

that both sequence structure and grid structure are special cases of graph struc-

ture, and graph structure can flexibly model regular and irregular objects. We 

thus view images as graph structures.

be too random, which destroys the expressive ability of the semantic 

information of the original graph. Second, most existing methods gen-

erate multiple contrastive views and enforce consistency by maximizing 

the mutual information (MI) between them (e.g., [13,14]). While this 

strategy improves representation robustness, it also has a potential draw-

back: it may lead the model to preserve task-independent or redundant 

patterns that exist across views but are not semantically informative for 

downstream tasks. For example, GraphCL [13] applies random struc-

tural augmentations (such as node dropping and edge perturbation) 

to generate graph views, and then maximizes MI between them. This 

may encourage the model to retain low-level topological patterns that 

are shared due to augmentation artifacts rather than task-relevant se-

mantics. Similarly, InfoGraph [14] attempts to maximize MI between 

node-level and graph-level representations, but lacks explicit mecha-

nisms to suppress noise or irrelevant patterns that may be reinforced 

by global pooling. In contrast, GIB [15] argues that effective representa-

tion learning in downstream tasks requires minimizing MI between the 

original graph and its latent encoding, thus discarding redundant struc-

tural cues while preserving task-relevant information. However, existing 

GIB-based frameworks usually assume random or fixed augmentations, 

which fail to adapt to structural heterogeneity in graph-structured data. 

In this paper, we reveal this limitation and propose an adaptive instan-

tiation that extends GIB to node and edge-level views, deepening its 

theoretical foundation in graph contrastive learning.

To address the aforementioned issue, we propose a novel Graph 

Information Bottleneck for Remote Sensing Segmentation (GIB-RSS) 

method, which consists of two key steps, i.e., an adaptive feature aug-

mentation module and a graph contrastive learning via an information 

bottleneck module.

First, we introduce a learnable graph contrastive view to adaptively 

learn whether to mask nodes and edges to improve the node represen-

tation ability of the original graph, which is optimized together with 

downstream remote sensing segmentation and classification in an end-

to-end learning manner. The intuition behind the adaptive masking 

strategy is that random masking may discard minority class nodes, which 

aggravates the data imbalance in the graph structure. However, GCNs 

aggregate the information of surrounding neighbor nodes through the 

message-passing mechanism, which makes it easy for GCNs to recon-

struct the feature information of popular nodes, but it is difficult to

reconstruct the feature information of isolated nodes with low degrees. 

These adaptively masking-generated graph contrastive views increase 

the ability against imbalanced learning for remote sensing segmentation.

Second, we propose to integrate different graph-contrastive views 

into compact representations for downstream remote sensing segmen-

tation tasks, which can further improve the feature representation 

capabilities of nodes. Recent advances have shown that downstream per-

formance can be improved by fusing complementary semantic informa-

tion between different views [12]. Therefore, we argue that maximizing 

the mutual information (MI) between graph contrastive views forces a 

consistent representation of the graph structure, which leads the model 

to capture task-independent redundant information. Inspired by the in-

formation bottleneck (IB) theory, we use it to minimize the MI between 

the original graph and the generated contrastive view while preserving 

task-relevant semantic information. Through the above approach, the 

model can jointly learn complementary semantic information between 

different views.

Compared with previous work, the contributions of this paper are 

summarized as follows.

1. We propose a novel Graph Information Bottleneck for Remote

Sensing Segmentation (GIB-RSS) method, which enables flexible 

modeling of irregular objects.

2. We introduce a novel graph contrastive learning approach to opti-

mize node representations by adaptively masking nodes and edges, 

which improves the representation ability of graph structure.

3. We innovatively embed the information bottleneck theory into

the graph contrastive learning method, which can effectively 

eliminate redundant information while preserving task-related 

information.

4. Extensive experiments demonstrate that our method outperforms

the state-of-the-art on three publicly available datasets.

2. Related work 

2.1. CNN, and transformer for remote sensing segmentation

The early mainstream network architecture for remote sensing seg-

mentation extracts visual features of images by using CNN. The earliest 

remote sensing image segmentation methods based on CNN are all 

evolved from FCN ([16,17], etc) and UNet (e.g., [18–20], etc). UNet 

extracts the context and location information of the image by designing 

a U-shaped structure based on the encoder and decoder, where both of 

them are composed of convolutional layers, skip connections, and pool-

ing layers. FCN extracts image features through several convolutional 

layers and then connects a deconvolutional layer to obtain a feature map 

of the same size as the raw image, so as to predict the image pixel by 

pixel. However, both FCN and UNet algorithms need to down-sample to 

continuously expand the receptive field when extracting image features, 

which leads to the loss of image position information. To alleviate the 

problem of information loss caused by the downsampling operation, the 

DeepLab series [21] uses hole convolution to increase the receptive field 

to obtain multi-scale feature information. The HRNet proposed by Wang 

et al. [22] achieves high-resolution semantic segmentation by extract-

ing feature maps of different resolutions and recovering high-resolution 

feature maps.

Transformer [23,24] is widely used in the image processing field 

because of its powerful global information processing capabilities. ViT 

proposed by Dosovitskiy et al. [4] applied the Transformer architec-

ture to CV for the first time, and she used the attention to extract 

global visual features. Since the complexity of the attention is 𝑂(𝑛 

2 ), 

this leads to a very large number of parameters in the model, and the 

model is difficult to train. To solve the above problems, Liu et al. [5] 

proposed Swin-Transformer, which improves the issue of high model 

complexity through a hierarchical attention mechanism. The Wide-

Context Transformer proposed by Ding et al. [1] extracts global context 

information by introducing a Context Transformer while using CNN
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to extract features. Zhang et al. [3] extract multi-scale contextual fea-

tures by combining Swin-Transformer and dilated convolutions and use 

a U-shaped decoder to achieve image semantic segmentation.

2.2. Graph neural networks

Kipf et al. [25] were the first to propose graph convolutional neural 

networks. In recent years, spatial-based GCNs and spectral-based GCNs 

have started to receive widespread attention, and they are applied to 

graph-structured data (e.g., social networks [26] and citation networks 

[27], etc.). 

In recent years, graph neural networks (GNNs) has received extensive 

attention from researchers due to its powerful feature extraction capabil-

ities, and it has been widely used in action recognition [28], point cloud 

analysis [29] and other fields [7]. GNNs can flexibly model irregular 

objects and extract global location feature information. In the remote 

sensing segmentation field, Saha et al. [30] use GNNs to aggregate and 

label unlabeled data to improve the ability of the model to approach the 

target domain.

2.3. Graph contrastive learning

Graph contrastive learning (GCL) aims to learn compact represen-

tations of nodes or subgraphs in graph data, emphasizing similarities 

within the same graph and differences between different graphs. GCL has 

been applied in many fields, including social network analysis, drug dis-

covery, image analysis, etc. For example, in social networks, similarities 

between users can be discovered through GCL, and in drug discov-

ery, potential drug similarities can be mined by contrasting molecular 

structures.

In recent research, DGI [31] and InfoGraph [14] obtain compact rep-

resentations of graphs or nodes by maximizing the mutual information 

(MI) between different augmented views. MVGRL [12] argues that it can 

achieve optimal feature representation by contrasting first-order neigh-

bor nodes and performing node diffusion to maximize the MI between 

subgraphs. GraphCL [13] constructs four types of augmented views and 

maximizes the MI between them. GraphCL enables better generalization 

performance on downstream tasks. However, GraphCL requires complex 

manual feature extraction. We argue that a good contrast-augmented

view should be structurally heterogeneous while semantically similar, 

while previous research work maximizes the mutual information be-

tween nodes, which may lead to overfitting of the model. To solve 

the above issues, Wu et al. [15] introduced GIB to regulate redun-

dancy in graph representation. However, their formulation does not 

consider the heterogeneity of contrastive graph views, nor the challenges 

of imbalanced graph structures. In contrast, our work extends GIB by 

integrating adaptive masking strategies and deriving graph-specific vari-

ational bounds, thereby deepening the theoretical understanding of GIB 

in contrastive learning.

3. Approach

In this section, we illustrate the construction of graph-structured data 

from images and introduce the GCL architecture with the information 

bottleneck to learn to extract global information locations of images.

3.1. Structure flow

Our main goal is to design an efficient modeling paradigm for global 

location information extraction of irregular objects, detailed in Fig. 2. 

For a given remote sensing image (𝐻 × 𝑊 × 3), we first divide it into 

𝑀 patches. Then we map each image patch to a 𝐷-dimensional feature 

space 𝑥𝑖 ∈  

 R 

𝐷, and obtain a collection of feature vectors for an im-

age 𝑋. We consider 𝑋 to be a node in the graph, i.e., 𝑉 = {𝑣 1 

, 𝑣 2 

, 𝑣 𝑁 

}. 

For node 𝑣 , we use the KNN algorithm to find its𝑖   𝐾 neighbors 𝑁(𝑣 𝑖 

) =
{𝑣 

1
𝑖 

, 𝑣 

2
𝑖 

,… , 𝑣𝐾}.𝑖  For 𝑣 𝑗 ∈ 𝑁(𝑣 𝑖       

 

), we connect an edge 𝑒 from to𝑗𝑖  𝑣 𝑗  

𝑣 𝑖 

. Through the above process, we get a directed graph 𝐺 = (𝑉 , 𝐸). 

Following UNet’s network architecture design, feature embedding for 

images uses 𝑁 encoders for feature encoding. Each stage consists of 

a GIB Embedding block, a skip connection module and a downsam

pling layer. GIB Embedding Block utilizes the inherent flexible modeling 

of non-Euclidean distance in the graph structure, follows the global 

modeling rules of node aggregation, and customizes the global position 

information interaction of the image. We downsample the feature maps 

with a 3 × 3 kernel. Similarly, the decoder stage consists of the proposed 

GE block and an upsampling layer to decode and reconstruct features. To 

ensure the effective utilization of information and the depth of network 

training, the decoder input of each stage is connected with the output of

-

Fig. 2. The architecture of the proposed GIB-RSS method. Specifically, we first divide the image into patches and construct it as a graph. Then we replace the 

convolutional block in UNet with our GCN Block and use the constructed graph as the input. Finally, we build an MLP to classify pixels.
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the encoder of the same stage. Finally, a convolutional layer is applied 

to generate the segmented image 𝑆 ∈ 𝐶 𝑖𝑛 

× 𝐻 × 𝑊 , which is predicted

pixel by pixel.

3.2. GCN embedded block

The advantages of using a graph structure to model images are as 

follows: (1) The graph can flexibly handle data with non-Euclidean dis-

tances. (2) Compared with regular grid or sequence structures, graphs 

can model irregular objects while eliminating redundant information, 

and remote sensing images are mostly irregular objects. (3) The graph 

structure establishes the connection between objects (e.g., roads, trees, 

etc) through the connection between nodes and edges.

Specifically, for an input image feature 𝑋, we first construct a di-

rected graph 𝐺 = 𝐺(𝑥). To obtain the global location information of the 

image and update node features, we use graph convolution operations to 

aggregate and update node features. The formula is defined as follows:

𝐺 

′ = 𝐹 (𝐺, W)

= Update 

( 

Aggregate 

( 

𝐺,𝑊 agg 

) 

,𝑊 update
)

= LeakyReLU
⎛

⎜

⎜

⎝

∑

𝑟∈R

∑

𝑗∈N 𝑟
𝑖

1
|N 𝑟

𝑖 | 

( 

𝜔(𝑙) 

𝑖𝑗 𝑊 

(𝑙) 

𝜃 1
𝑥 

(𝑙) 

𝑗 + 𝜔 

(𝑙) 

𝑖𝑖 𝑊 

(𝑙)
𝜃 2

𝑥 

(𝑙)
𝑖

)
⎞

⎟

⎟

⎠

(1)

( (𝑊 𝑙)𝑊 𝑙)
 

 

,𝑎𝑔𝑔   𝑢𝑝𝑑𝑎𝑡𝑒,𝑊𝜃 ,𝑊
1 𝜃2

where is learnable weights, 𝑤 is the edge𝑖𝑗    

 

weight between node 𝑖 and node 𝑗, and its formula is defined as follows:

𝜔 

(𝑙+1)
𝑖𝑗 = sof tmax 

( 

𝑊 

(𝑙) [𝑥 

(𝑙) 

𝑖 

⊕ 𝑥 

(𝑙)
𝑗 ] 

)

= 

exp 

[ 

𝑥(𝑙)𝑖 ⊕ 𝑥 

(𝑙)
𝑗

]

∑ 

𝜂∈N 𝑖
exp 

[

𝑥 

(𝑙)
𝑖 ⊕ 𝑥 

(𝑙)
𝑗

] ,
(2)

To capture the location information of key regions in the image, 

we further introduce a multi-head attention mechanism to update node 

features. The format is defined as follows:

𝐱 

′ 

𝑖 = 

[ 

head1 𝑊 

1
update , head 

2𝑊 

2
update, … , head 

ℎ𝑊 

ℎ
update

] 

(3)

where ℎ represents the number of multi heads, we set ℎ = 4.
We introduce the residual idea, and project node features to the 

same domain through a linear layer, which can help restore structural 

features and global position information. In addition, we also insert 

the LeakyReLU non-activation function to improve the nonlinear fitting 

ability of the model. The formula is expressed as follows:

𝑌 = LeakyReLU 

( 

GraphConv
( 

𝑋𝑊 in 

)) 

𝑊 out + 𝑋 (4)

To improve the feature transformation ability of nodes and alleviate 

the over-smoothing phenomenon of GCN, we use feed-forward network 

(FFN) to perform feature mapping on each node again. The formula for 

FFN is defined as follows:

𝑌 

′ = LeakyReLU 

( 

𝑌𝑊1 

) 

𝑊 2 

+ 𝑌 (5)

where 𝑊 1 and 𝑊2 are the learnable parameters. 

3.3. Graph information bottleneck

The principle of graph information bottleneck (GIB) [15] is to in-

troduce information bottleneck (IB) on the basis of GCL to perform 

contrastive learning between nodes or graphs. It forces the node repre-

sentation 𝑍 𝑋 

to minimize the task-independent redundant information

D and maximize the information 𝑌 relevant to the downstream tasks.

Specifically, we follow the local dependency assumption for graph-

structured data: for a given node 𝑣, node 𝑣’s first-order neighbor node

data are related to node 𝑣, while the rest of the graph’s data are indepen

dent and identically distributed with respect to node 𝑣. The hypothesis 

space represented by nodes can be constrained according to local depen

dency assumptions, which reduces the difficulty of GIB optimization. We 

assume that P(𝑍 𝑋 

|D) represents modeling the correlation between node

features hierarchically. In each iteration 𝑙, the representation of each 

node is optimized by aggregating surrounding neighbor node informa
(𝑙)

tion and graph structure information
 

 𝑍 .𝐴  Therefore, the optimization

goal of GIB is defined as follows:

-

-

-

min
P(𝑍(𝐿)

𝑋 |D)∈Ω
GIB 𝛽 (D, 𝑌 ;𝑍(𝐿)

𝑋 ) ≜ 

[

−𝐼(𝑌 ;𝑍(𝐿)
𝑋 ) + 𝛽𝐼(D;𝑍 

(𝐿)
𝑋 ) 

]

(6)

where Ω conforms to the representation space of Markov chain prob-

ability dependence within a given data set D, 𝐼(, ) represents mutual 

(𝐿)
information between feature vectors, 𝑍 represents𝑋  the feature repre-

sentations of the nodes, and 𝛽 is the balance coefficient. In Eq. (6), the 

(
model only needs to optimize two distributions, i.e., P( ) ( −1)𝑍 𝑙

|𝐴 𝑍 𝑙
 𝑋 , 𝐴), 

and P( (𝑍 𝑙)
|

(
𝑋 𝑍 𝑙−1) (

𝑋 , 𝑍 𝑙)) (𝑙)
,𝐴  where 𝑍 is𝐴  the graph structure information. 

However, in Eq. (6), calculating the mutual information 𝐼(𝑌 ; 𝑍 

(𝐿)
𝑋 

) 

(
and 𝐼(D;𝑍 𝐿)

 )𝑋  is a difficult estimation problem. Therefore, we follow the 

( ; (𝐿)) (D; ( )
IB criterion to introduce variational bounds on 𝐼 𝑌 𝑍 and𝑋   𝐼 𝑍 𝐿

 )𝑋  

to effectively perform parameter optimization. We give the upper and 

(
lower (D; (𝐿)

 bounds of 𝐼  𝑍 ) )
 and𝑋  𝐼(𝑌 𝐿

 ;𝑍 ) as shown in𝑋  Theorems 1 and

2 respectively.

Theorem 1. For any class distribution given Q 1 

(𝑌 |

(
𝑣 𝑍 𝐿) )𝑋,𝑣  for 𝑣 ∈ 𝑉 and 

(Q 𝐿)
 2(𝑌 ) in a graph, we can obtain a theoretical  

 

lower bound for 𝐼(𝑌 ;𝑍 ):𝑋

𝐼(𝑌 ;𝑍(𝐿)
𝑋 ) ≥ 1 + E

⎡ 

⎢ 

⎢ 

⎣

log 

∏ 

𝑣∈𝑉 Q 1 

(𝑌 𝑣|𝑍
(𝐿)
𝑋,𝑣)

Q 2 

(𝑌 )

⎤ 

⎥ 

⎥ 

⎦ 

+ E P(𝑌 )P(𝑍(𝐿)
𝑋 )

⎡ 

⎢ 

⎢ 

⎣

∏ 

𝑣∈𝑉 

Q 1 

(𝑌 𝑣|𝑍
(𝐿)
𝑋,𝑣)

Q 2 

(𝑌 )

⎤ 

⎥ 

⎥ 

⎦

(7)

𝑙
node ( ( )

Theorem 2. For any given  feature distribution Q 𝑍 )𝑋  and graph 

structure information distribution Q( (𝑍 𝑙) ), we use Markov chain dependence𝐴       

(
 

𝐿)
to derive the upper bound of 𝐼(𝑌 ;𝑍 )𝑋  as follows:

𝐼
(

D;𝑍(𝐿)
𝑋

) 

≤ 𝐼
(

D; {𝑍(𝑙)
𝑋 } 𝑙∈𝑆 𝑋

∪ {𝑍(𝑙)
𝐴 }𝑙∈𝑆𝐴

) 

≤ 

∑

𝑙∈𝑆 𝐴

AIB 

(𝑙) + 

∑

𝑙∈𝑆 𝑋

XIB 

(𝑙)

(8)

where 𝑙 ∈ {𝑆 𝑋 , 𝑆 𝐴}, and 

AIB 

(𝑙) = E 

[ 

log
P(𝑍(𝑙)

𝐴 |𝐴,𝑍 

(𝑙−1)
𝑋 )

Q(𝑍(𝑙)
𝐴 )

] 

,

XIB 

(𝑙) = E 

[ 

log
P(𝑍(𝑙)

𝑋 |𝑍(𝑙−1)
𝑋 , 𝑍(𝑙)

𝐴 )

Q(𝑍(𝑙)
𝑋 )

]

(9)

where AIB and XIB represent the adjacency matrix features and the node 

features obtained using the IB criterion, respectively.
)

We ( (𝑙
 optimize P 𝑍 |

(
𝐴 𝑍 𝑙−1) ( ) ( −1) ( )

𝑋 , 𝐴) 𝑍 𝑙
 and |𝑋 𝑍 𝑙

 P( 𝑋 , 𝑍 𝑙 )𝐴  given a theoreti

cal upper and lower bound. Next, we will specify the optimization goals 

of GIB.

-

Objective for training. To update model parameters in GIB, we 

need to calculate the theoretical boundary of GIB in (6). Specifically, 

we use a uniform distribution to optimize the classification problem:

𝑍 𝐴 ∼ Q(𝑍 𝐴 

), 𝑍 𝐴,𝑣 = ∪ 

T
𝑡=1{𝑢 ∈ 𝑉 𝑣𝑡|𝑢 

iid ∼ Cat( 1
|𝑉 𝜐𝑡| 

)}. Therefore, we can
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(obtain an estimate of AIB 

𝑙) as follows:

ÂIB 

(𝑙) 

= EP(𝑍(𝑙)
𝐴 |𝐴,𝑍(𝑙−1)

𝑋 ) 

[ 

log
P(𝑍(𝑙)

𝐴 |𝐴,𝑍 

(𝑙−1)
𝑋 )

Q(𝑍 

(𝑙)
𝐴 )

]

(10)

(AIB 

𝑙) can be formally defined as follows:

̂ AIB C
(𝑙) 

= 

∑

𝑣∈𝑉 ,𝑡∈[T ] 

KL 

( 

Cat(𝜙(𝑙)
𝑣𝑡 )|| Cat 

(

1
|𝑉 𝑣𝑡| 

)) 

(11)

For the estimation of XIB, we use a learnable Gaussian distribution 

(𝑙)
to set Q(𝑍 ).𝑋  Specifically, for a given node 𝑣, 𝑍 𝑋 ∼ Q(𝑍 𝑋 ), we assume

∑ (𝑙)
𝑍 ∼ 𝑚 𝑤 . 

 

Gaussian(𝜇 0 , 𝜎2 ) Therefore XIB̂
 

𝑋,𝑣 𝑖=1 𝑖 ,𝑖 0
 

,𝑖  is formally defined as

follows:

̂ XIB 

(𝑙) 

= log
P(𝑍(𝑙)

𝑋 |𝑍(𝑙−1)
𝑋 , 𝑍(𝑙)

𝐴 )

Q(𝑍 

(𝑙)
𝑋 )

= 

∑

𝑣∈𝑉

[

log Φ(𝑍 

(𝑙)
𝑋,𝑣;𝜇 𝑣, 𝜎 

2
𝑣 ) − log 

( 𝑚
∑

𝑖=1
𝑤 𝑖Φ(𝑍(𝑙)

𝑋,𝑣;𝜇 0,𝑖, 𝜎
2
0,𝑖) 

)]

(12)

where 𝜇 0,𝑖 

, 𝜎 0,𝑖, 𝑤 𝑖 

are the learnable. 

Combining Eqs. (11) and (12), 

(
we can estimate 𝐼(D;𝑍 𝐿)

 )𝑋  as follows:

𝐼(D;𝑍(𝐿)
𝑋 ) → 

∑

𝑙∈𝑆 𝐴

ÂIB 

(𝑙) 

+ 

∑

𝑙∈𝑆 𝑋

̂ XIB 

(𝑙) 

(13)

(
We use cross entropy to estimate 𝐼(𝑌 ; 𝑍 𝐿)

 )𝑋  as follows: 

𝐼(𝑌 ;𝑍(𝐿)
𝑋 ) → −

∑

𝑣∈𝑉
Cross-Entropy(𝑍(𝐿)

𝑋,𝑣𝑊 out; 𝑌 𝑣) (14)

By combining Eqs. (13) and (14), we can obtain the optimization 

objective of GIB.

3.4. Instantiating GIB-RSS

After detailing the optimization principles of GIB, we will explain the 

GIB-RSS architecture we designed as shown in Fig. 3. It is worth noting 

that this instantiation is not a simple application of GIB. By introducing 

learnable node- and edge-masking, we uncover a limitation of original 

GIB—random augmentations may discard rare but task-critical nodes.

Our adaptive implementation extends GIB to heterogeneous multi-view 

contrastive learning, providing a new paradigm where the bottleneck is 

optimized not only within a single view but across multiple structurally 

diverse views.

Node-masking view. To improve the feature representation ability 

of nodes in the learning process, we perform learnable node masking 

before each information aggregation and feature update of GCN. The 

formula for the node mask view we created is as follows:

G(𝑙)𝑁𝐷 = 

{{ 

𝑣 𝑖 

⊙ 𝜂 

(𝑙)
𝑖 ∣ 𝑣 𝑖 

∈ V 

} 

, E ,R,W 

} 

, (15)

(
where 𝜂 𝑙) ∈ {0, 1} is sampled from a parameterized Bernoulli distribu𝑖  -

tion 𝐵𝑒𝑟𝑛(𝜔𝑙) (
, and 𝜂 𝑙) (𝑙)

𝑖  = 0 represents masking node 𝑣 𝑖 

,𝑖  𝜂 =𝑖  1 represents

keeping node 𝑣 𝑖 

.

Edge-masking view. The goal of the edge-masking view is to gener

ate an optimized graph structure, and the formula is defined as follows:

-

G(𝑙)𝐸𝐷 = 

{ 

V , 

{ 

𝑒 𝑖𝑗 

⊙ 𝜂(𝑙)𝑖𝑗 ∣ 𝑒 𝑖𝑗 

∈ E ,R,W 

}} 

, (16)

( )
 𝜂 𝑙

where ∈𝑖𝑗  {0, 1} is also sampled from a parameterized Bernoulli dis-
)

tribution 𝐵𝑒𝑟𝑛() ( ) (
, and 𝜂 𝑙 = 𝑙

𝑖𝑗  0 represents masking edges 𝑒𝑖𝑗 

 

, 𝜂 =𝑖  1
represents keeping edge 𝑒𝑖𝑗 . 

To enable the model to adaptively learn whether to mask nodes and 

edges, we introduce learnable parameters for nodes and edges as follows:

̂ 𝐞(𝑙)𝑖 = 𝜔 

(𝑙)
𝑖

(

𝐞 

(𝑙)
𝑖

) 

; ̂ 𝐞(𝑙)𝑖𝑗 = 𝜔 

(𝑙)
𝑖𝑗

([ 

𝐞(𝑙)𝑖 ; 𝐞(𝑙)𝑗
]) 

, (17)

(
where 𝜔 𝑙) (

𝑖 and 𝜔 𝑙)
 are𝑖𝑗  the learnable parameters. 

To efficiently optimize the multi-view structure learning in an end-

to-end manner, we adopt the reparameterization trick [32] and relax 

the binary mask variable 𝜌 from being sampled directly from a Bernoulli 

distribution to a deterministic and differentiable function of a learnable 

parameter 𝜔 and an independent random variable 𝜖, formulated as:

𝜌 = 𝜎 

(

log 𝜖 − log(1 − 𝜖) + 𝜔
𝜏 

) 

, (18)

where 𝜖 ∼ 𝑈𝑛𝑖𝑓 𝑜𝑟𝑚(0, 1) +, 𝜏 ∈ R  

 is the temperature, and 𝜎(⋅) is the sig-
𝜕𝜌
,𝜕𝜔  moid function. This relaxation ensures smooth gradients enabling

Fig. 3. The overview of the GCN Embedded Block framework. We generate two contrastive graph views through learnable node masking and edge masking mech-

anisms. Each view is encoded via GCN-based embeddings to produce 𝐸 𝑁𝐷 (node-masked embeddings) and 𝐸 𝐸𝐷 (edge-masked embeddings), respectively. Both are 

passed through shared MLPs to compute representations 𝐸, which are then regularized using the graph information bottleneck objective. The mutual information 

between the input graph structure and each embedding is minimized to remove redundant task-independent redundant information. The final loss combines the 

supervised segmentation loss L 𝑠 

and the bottleneck regularization loss L 𝑐 

.
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efficient end-to-end optimization of the learnable Node-Masking and 

Edge-Masking views.

In practice, the logits 𝜔 are generated by lightweight neural networks 

implemented as a multilayer perceptrons (MLPs) with two linear layers. 

For the node mask network, the input is the node feature vector output 

from the previous GCN layer, which passes through a MLPs and outputs 

a scalar logit; applying the sigmoid function yields the node retention 

probability. For the edge mask network, the
[

 input is the concatenated 

 ] 

feature vectors of the two endpoint nodes 𝐞𝑖; 𝐞 ,𝑗  which are  

  

fed into

a similar MLPs to produce the edge retention probability. These net

works are lightweight auxiliary modules, independent from but trained 

jointly with the GCN layers. While their parameters are not shared with

the GCN, they are conditioned on the evolving graph embeddings, al

lowing masking decisions to adapt dynamically to the representation 

learning process. During training, node or edge dropping is guided by 

the learned probabilities, while at inference we drop nodes or edges with 

a probability less than 0.5 to maintain structural consistency.

-

-

After obtaining the masked node and edge-masking views, we in-

put them into GCN for feature representation to obtain optimized 

multi-views. The formula is defined as follows:

𝐄 

(𝑙)
𝑁𝐷 

= 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣 

(

𝐄 

(𝑙−1)
𝑁𝐷 

,G(𝑙)𝑁𝐷

) 

, 

𝐄 

(𝑙)
𝐸𝐷 = 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣 

(

𝐄 

(𝑙−1)
𝐸𝐷 ,G(𝑙)𝐸𝐷

) 

.
(19)

where 𝐺𝑟𝑎𝑝ℎ𝐶𝑜𝑛𝑣 represents the graph convolution operation, and 

we choose GAT as our graph encoder. 𝐄 and represent the𝑁 𝐷  

 

𝐄 𝐸𝐷  

node feature representations of node-masking view and edge-masking 

view respectively, 𝐆 𝑁𝐷 

and 𝐆 𝐸𝐷 

represent node-masking view and 

edge-masking view respectively.

After obtaining the node mask and edge mask views, we combine 

Eqs. (13) and (14) to jointly optimize the self-supervised losses L 𝑠 

and

L 𝑐 

as follows:

min(L 𝑠 + L 𝑐 

) = 𝐼(D 

(𝐸𝐷) ;𝑍(𝐸𝐷)
𝑋 ) + 𝐼(𝑌 ;𝑍(𝐸𝐷)

𝑋 )

+ 𝐼(D 

(𝑁𝐷);𝑍(𝑁𝐷)
𝑋 ) + 𝐼(𝑌 ;𝑍(𝑁𝐷)

𝑋 ) (20) 

where D(
 

𝐸𝐷) and D(
 

𝑁𝐷) represent the graph structure of the node-
(𝐸

masking and edge-masking views res  and 𝑍 𝐷) (𝑁𝐷)
pectively,

 

 and𝑋  𝑍 𝑋
represent the node features of the node-masking and edge-masking 

views respectively. Notably, we do not introduce additional loss terms 

or regularization for mask selection. The mutual information loss func-
(tions (e.g., 𝑋𝐼𝐵 

𝑙) and 𝐴𝐼𝐵 

(𝑙) in Eqs. (11) and (12) inherently su-

pervise the learning of meaningful and sparse masks by encouraging 

the embeddings to preserve task-relevant information while discarding 

task-independent redundancy.

3.5. Model training

All components of the proposed GIB-RSS architecture are trained 

jointly in an end-to-end fashion. The encoder–decoder structure, com-

posed of multiple GIB Embedded Blocks, is fully differentiable. Each 

GIB block processes the graph at a different resolution level, follow-

ing the UNet design, and contributes to the final segmentation output. 

Importantly, all GIB blocks share a unified training process and are op-

timized simultaneously, rather than in a stage-wise or separate manner.

During training, we optimize a total loss function that consists of two 

parts:

• Supervised segmentation loss Lseg 

 

, which encourages accurate pixel-

level classification on labeled remote sensing images.

• Graph information bottleneck loss on two contrastive views (node-

masked and edge-masked), which regularizes the mutual informa

tion between node representations and graph structures, denoted as

L𝑐 and L𝑠 , respectively.

-

The final objective function is defined as:

L total 

= L seg + 𝛼 ⋅ 

( 

L 𝑐 

+ L 𝑐
) 

(21)

where 𝛼 is a balancing hyperparameter. The supervised loss Lseg 

 

is the 

cross-entropy loss defined in Eq. (20). The bottleneck losses ND
 L andGIB  

LED
 areGIB  derived from the upper and lower bounds of mutual information 

as defined in Eqs. (13) and (14), computed independently for each view.

All model parameters, including the GIB block parameters, multi-

head attention weights, Bernoulli masking generators, and pixel clas-

sifiers, are updated jointly via backpropagation using the AdamW 

optimizer. This end-to-end training scheme ensures that the model learns 

semantically meaningful and task-relevant node representations, while 

effectively suppressing redundant information.

4. Experiments

In this section, we verify the effectiveness of the proposed GIB-RSS 

on remote sensing image segmentation tasks.

4.1. Benchmark datasets used

For the GIB-RSS model, we use the widely used datasets UAVid [33], 

Vaihingen [34] and Potsdam [35] datasets for experimental evaluation. 

The UAVid dataset comes with two spatial resolutions. Specifically, the 

UAVid dataset contains a total of 420 images, and each image is cropped 

to a size of 1024 × 1024. The Vaihingen dataset consists of 33 images 

with a spatial resolution of 2494 × 2064. Each image is cropped to 1024

× 1024. The Potsdam dataset contains 38 image patches with a spa-

tial resolution of 6000 × 6000, and we crop the original image size to 

1024 × 1024. The LoveDA dataset contains 5, 987 high-resolution re-

mote sensing images with size 1024 × 1024, 2522 images are used for 

training, 1669 images are used for validation, and 1796 images are used 

for testing. The data information of the dataset is shown in Table 1.

4.2. Experimental settings

GIB-RSS is implemented on NVIDIA A100 GPU with 80 G memory 

using PyTorch framework. For the hyperparameters in the experiments, 

the paper utilize the AdamW optimizer for gradient updates. The GIB-

RSS’s learning rate (LR) is set to 5e-4 and a cosine learning rate decay is 

utilized to dynamically adjust the LR. During model training, we use a 

random flip strategy for data augmentation. For the UAVid dataset, we 

crop the image size to 1024 × 1024. For Vaihinge, Potsdam datasets, we 

crop images to 512 × 512. When the GIB-RSS is trained, we set epoch to 

80, and batch size to 32.

4.3. Evaluation metrics

We used multiple evaluation metrics to evaluate the experimental 

performance of all models, including Overall Accuracy (OA), meanF1, 

and mIoU. OA, F1 and mIOU reflect the accuracy of remote sensing 

image segmentation from different perspectives.

4.4. Baseline models

MSD: The Multi-Scale-Dilation (MSD) method proposed by Lyu et al. 

[33] achieves image segmentation by using a large-scale pre-trained 

model to extract multi-scale features of the image.

Table 1 

The division of the train set, val set and test set in the benchmark dataset and 

the resolution information of the images.

Datasets Resolutions Train Test Val

UAVid 3840 × 2160/4096 × 2160 200 150 70

Vaihingen 2494 × 2064 15 17 1

Potsdam 6000 × 6000 22 14 1

LoveDA 1024 × 1024 2522 1796 1669
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CANet: The Context Aggregation Network (CANet) proposed by Yang 

et al. [36] effectively extracts the spatial information and global in-

formation of the image by building a dual-branch CNN and uses an 

aggregation mechanism to fuse the spatial and global context informa-

tion.

DANet: The dual attention network (DANet) proposed by Fu et al. 

[37] achieves the extraction and fusion of global and local semantic 

information in space and channels.

SwiftNet: SwiftNet proposed by Orsic et al. [38] uses a pyramid 

structure to perform feature fusion of local information. SwiftNet adds 

regularization terms to constrain the model during the optimization 

process.

BiSeNet: The Bilateral Segmentation Network (BiSeNet) proposed by 

Yu et al. [39] extracts spatial information and high-resolution features 

by setting small-stride spatial convolution kernels. At the same time, a 

down-sampling strategy is used to extract contextual information, and a 

fusion module is designed to achieve effective fusion of information.

MANet: The multi-attention network (MANet) proposed by Li et al. 

[40] reduces the computational load of the model by constructing a 

linear attention module to ensure modeling context dependencies.

ABCNet: The Attention Bilateral Context Network (ABCNet) pro-

posed by Li et al. [41] can lightweightly extract spatial information and 

contextual information of images.

Segmenter: Segmenter proposed by Strudel et al. [42] introduces 

ViT to realize the modeling of global context information. Unlike CNNs, 

Segmenter can obtain class labels pixel by pixel.

SegFormer: SegFormer proposed by Xie et al. [43] combines 

Transformer and MLP to extract multi-scale features of images in a 

hierarchical manner.

BANet: Wang et al. [44] proposed a bilateral perception network 

(BANet) to extract texture information and boundary information in 

images in a fine-grained manner. BANet is based on the Transformer 

pre-training model to achieve information fusion.

BoTNet: The BoTNet proposed by Srinivas et al. [45] integrates the 

self-attention mechanism into the ResNet module to extract the global 

context information of the image.

TransUNet: TransUNet proposed by Chen et al. [46] embeds 

Transformer’s self-attention mechanism into the structure of UNet so 

that the model can better capture the global relationship of the input 

image.

ShelfNet: ShelfNet proposed by Zhuang et al. [47] adopts a multi-

resolution processing strategy, which processes input images at different 

levels. Such a design allows the network to better capture local details 

in the image while retaining the global information of the image.

CoaT: CoaT proposed by Xu et al. [48] adopts a co-scaling mecha-

nism to maintain the integrity of the Transformers encoder branch at 

different scales and provides rich multi-scale and contextual informa-

tion.

UNetFormer: UNetFormer proposed by Wang et al. [49] intro-

duces the Transformer mechanism based on UNet. In UNetFormer, 

Transformer is used to better capture the global contextual information 

in the image and improve the model’s ability to understand the overall 

structure.

5. Results and discussion

To illustrate the superiority of our proposed method GIB-RSS, 

we conduct experiments on four benchmark datasets (i.e., UAVid, 

Vaihingen, LoveDA, and Potsdam). The experimental results are shown 

in Tables 2–5. GIB-RSS outperforms the existing state-of-the-art compar-

ison algorithms.

Specifically, on the UAViD dataset as shown in Table 2, GIB-RSS’s 

mIoU value is 70.6 %, which is 3 % to 11 % higher than other models. 

The segmentation accuracy in other categories is also better than other 

comparison algorithms. For example, the IoU values of segmentation 

on cluster, road, tree, and vegetation have all reached SOTA, which is 

significantly better than existing methods. Although the IoU values on 

building, moving car, and human are not optimal, the difference from 

the best segmentation results is relatively small. Among other compari-

son algorithms, UNetFormer’s effect is slightly lower than our algorithm, 

with an mIoU value of 67.8 %. We believe this is due to the fact that 

the architecture we designed is more suitable for segmenting irregular 

objects. Except for UNetFormer, the mIoU values of other comparison 

algorithms are significantly lower than the method GIB-RSS proposed in 

this paper.

On the Vaihingen dataset as shown in Table 3, GSIB-RSS’s mIoU value 

is 85.3 %, which is 2 % to 6 % higher than other models. OA and meanF1 

values are also higher than other methods. Specifically, the segmenta-

tion IoU value of our method GIB-RSS in four categories is significantly 

better than that of other comparison algorithms. It is only lower than 

some comparison algorithms (e.g., UNetFormer and Segmenter, etc.) in 

the tree category. The effect of UNetFormer is second, its mIoU value is 

67.8 %, which is 1.8 % lower than GIB-RSS. The segmentation effects 

of other comparison algorithms are significantly lower than GIB-RSS 

and UNetFormer, even if they use some pre-trained models with better 

performance.

On the Potsdam dataset as shown in Table 4, GIB-RSS’s mIoU value 

is 87.8 %, which is 1 % to 12 % higher than other models. Our algo-

rithm GIB-RSS is significantly better than other comparison algorithms 

in the segmentation effects of all categories. Similarly, UNetFormer 

has the second best segmentation effect on the Potsdam dataset, with 

an mIoU value of 87.4 %. Other comparison algorithms usually use 

pre-trained models such as ResNet or ViT as backbones to fine-tune 

downstream tasks. Although the segmentation effect on the Potsdam 

dataset is acceptable, it is lower than GIB-RSS.

On the LoveDA dataset as shown in Table 5, GIB-RSS can achieve 

optimal segmentation results in all categories. In addition, GIB-RSS has

Table 2

Experimental results of our method and SOTA methods on the UAVid dataset. The optimal values in columns are shown in bold.

Methods Backbone Clutter Building Road Tree Vegetation MovingCar StaticCar Human mIoU

MSD – 56.8 79.6 73.9 73.9 56.1 63.2 31.8 20.0 56.9

CANet – 65.8 87.0 61.9 78.8 77.9 48.0 68.5 20.0 63.5

DANet ResNet 65.1 86.2 78.0 77.9 60.9 60.0 47.1 8.9 60.5

SwiftNet ResNet 63.9 84.9 61.3 78.3 76.4 51.2 62.4 15.8 61.8

BiSeNet ResNet 64.5 85.8 61.0 78.1 77.1 48.8 63.2 17.4 62.0

MANet ResNet 64.4 85.1 77.9 77.4 60.5 67.5 53.4 14.6 62.6

ABCNet ResNet 67.3 86.1 81.5 79.7 63.3 69.2 48.3 13.6 63.6

Segmenter ViT-Tiny 63.7 85.2 80.1 77.0 58.1 58.4 35.3 13.9 59.0

SegFormer MiT-B1 67.3 87.3 79.8 80.1 62.7 71.7 52.7 29.3 66.3

BANet ResT-Lite 65.9 86.0 81.2 79.1 61.9 68.7 52.4 20.5 64.4

BoTNet ResNet 65.4 85.1 79.1 78.4 61.2 66.3 52.0 23.1 63.8

CoaT CoaT-Mini 68.9 89.1 79.8 80.4 61.7 69.5 60.2 19.1 66.1

UNetFormer ResNet 67.7 86.4 82.0 81.2 64.1 74.0 55.8 30.9 67.8

GIB-RSS – 71.2 89.0 83.0 81.9 79.7 70.6 59.3 29.9 70.6
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Table 3 

Experimental results of our method and SOTA lightweight methods on the Vaihingen dataset. The optimal values in columns are shown in bold.

Methods Backbone Imp.suf. Building Lowveg. Tree Car MeanF1 OA mIoU

DABNet – 88.0 89.1 73.9 85.0 59.9 79.2 83.9 69.9

ERFNet – 88.7 89.8 76.2 86.1 54.0 79.0 86.2 70.3

BiSeNet ResNet 88.7 90.7 81.0 87.1 72.9 84.1 86.6 76.3

PSPNet ResNet 88.8 92.9 81.8 88.1 44.2 79.2 88.0 76.1

DANet ResNet 89.7 94.1 81.9 86.9 44.6 79.4 87.6 69.6

FANet ResNet 91.2 94.1 83.1 88.7 72.0 85.8 90.0 76.0

EaNet ResNet 92.1 94.7 82.9 88.8 80.4 87.8 90.0 78.5

ShelfNet ResNet 92.1 94.8 84.1 88.9 78.0 87.6 90.1 77.9

MARsU-Net ResNet 91.8 94.8 84.1 89.0 78.2 87.6 89.7 78.9

SwiftNet ResNet 91.9 95.1 83.6 89.6 80.6 88.2 90.0 79.2

ABCNet ResNet 93.1 94.8 84.8 90.0 84.7 89.5 91.2 81.0

BoTNet ResNet 90.0 91.6 82.4 89.1 72.4 85.1 87.8 74.2

BANet ResT-Lite 91.6 94.8 84.0 90.3 87.2 89.6 90.5 81.4

Segmenter ViT-Tiny 90.1 92.6 80.7 90.3 68.2 84.4 87.6 73.7

UNetFormer ResNet 93.1 94.9 85.2 90.8 88.2 90.4 90.7 83.2

GIB-RSS – 94.7 96.8 86.8 89.9 91.5 91.8 92.9 85.3

Table 4 

Experimental results of our method and SOTA lightweight methods on the Potsdam dataset. The optimal values in columns are shown in bold.

Methods Backbone Imp.suf. Building Lowveg. Tree Car MeanF1 OA mIoU

ERFNet – 89.9 92.6 81.0 76.4 90.8 86.2 84.6 75.9

DABNet – 90.0 92.7 83.3 81.9 93.1 88.0 87.2 79.4

BiSeNet ResNet 90.2 94.6 85.5 86.2 92.7 89.8 88.2 81.7

EaNet ResNet 92.0 95.7 84.3 85.7 95.1 90.6 88.7 83.4

MARsU-Net ResNet 91.4 95.6 85.8 86.6 93.3 90.5 89.0 83.9

DANet ResNet 91.0 95.6 86.1 87.6 84.3 88.9 89.1 80.3

SwiftNet ResNet 91.8 95.9 85.7 86.8 94.5 91.0 89.3 83.8

FANet ResNet 92.0 96.1 86.0 87.8 94.5 91.3 89.9 84.2

ShelfNet ResNet 92.5 95.8 86.6 87.1 94.6 91.3 89.9 84.4

ABCNet ResNet 93.5 96.9 87.9 89.1 95.8 92.7 91.3 86.5

Segmenter ViT-Tiny 90.9 94.6 84.9 84.7 89.1 88.7 89.3 81.1

BANet ResT-Lite 92.6 95.8 86.5 88.9 96.2 91.9 91.7 85.7

SwinUperNet Swin-Tiny 92.7 96.5 88.0 88.4 95.8 91.7 91.2 86.0

UNetFormer ResNet 93.8 96.9 88.1 89.3 96.8 93.1 91.0 87.4

Mask2Former IMP 88.4 92.9 83.1 84.0 86.00 - 87.5 86.9

GIB-RSS – 94.9 97.9 88.7 90.7 97.2 93.9 93.5 87.8

Table 5 

Experimental results of our method and state-of-the-art methods on the LoveDA dataset. The optimal values in columns are shown in bold.

Methods Backbone Background Building Road Water Barren Forest Agriculture mIoU Complexity Speed

PSPNet ResNet50 44.4 52.1 53.5 76.5 9.7 44.1 57.9 48.3 105.7 52.2

DeepLabV3++ ResNet50 43.0 50.9 52.0 74.4 10.4 44.2 58.5 47.6 95.8 53.7

SemanticFPN ResNet50 42.9 51.5 53.4 74.7 11.2 44.6 58.7 48.2 103.3 52.7

FarSeg ResNet50 43.1 51.5 53.9 76.6 9.8 43.3 58.9 48.2 – 47.8

FactSeg ResNet50 42.6 53.6 52.8 76.9 16.2 42.9 57.5 48.9 – 46.7

BAnet ResNet50 43.7 51.5 51.1 76.9 16.6 44.9 62.5 49.6 52.6 11.5

TransUNet ViT-R50 43.0 56.1 53.7 78.0 9.3 44.9 56.9 48.9 803.4 13.4

Segmenter ViT-Tiny 38.0 50.7 48.7 77.4 13.3 43.5 58.2 47.1 26.8 14.7

SwinUperNet Swin-Tiny 43.3 54.3 54.3 78.7 14.9 45.3 59.6 50.0 349.1 19.5

DC-Swin Swin-Tiny 41.3 54.5 56.2 78.1 14.5 47.2 62.4 50.6 183.8 23.6

UNetFormer ResNet18 44.7 58.8 54.9 79.6 20.1 46.0 62.5 52.4 46.9 115.3

GIB-RSS – 45.8 59.6 56.4 80.4 21.2 48.2 63.7 54.1 34.2 122.1

a model parameter volume of 34.2 M and an inference speed of 122.1 

FPS, which is far superior to other comparison algorithms. Like other 

comparison algorithms, due to the use of large-scale pre-training models, 

this results in a relatively large number of model parameters and slow 

inference speed.

The performance improvement may be attributed to our method’s 

ability to flexibly model irregular objects, and the introduction of the 

multi-head attention effectively improves the model’s capture of key po-

sition information in the image. At the same time, we also introduced the 

information bottleneck theory to perform graph comparison learning. 

Unlike the previous GCL method, GIB obtains optimal graph structure 

representation by minimizing the mutual information between nodes. 

The intuition behind this is that a good augmented multi-view should

be structurally heterogeneous but semantically similar. However, the ex-

isting methods are all based on CNN or Transformer architecture, and 

their ability to extract global positional information of irregular objects 

is worse than GNN.

6. Sensitivity analysis of 𝜶

Fig. 4 illustrates the effect of varying 𝛼 on the segmentation per-

formance across UAVid, Vaihingen, Potsdam, and LoveDA. The results 

show that the model performance generally improves as 𝛼 increases from 

0.1, reaching the highest accuracy within the range of 0.5–0.8, and then 

slightly decreases when 𝛼 becomes too large. For UAVid and Potsdam, 

the mIoU peaks around 𝛼 = 0.7, achieving approximately 72 % and 90 %
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Fig. 4. Sensitivity analysis of the hyperparameter 𝛼 on four benchmark datasets 

(UAVid, Vaihingen, Potsdam, and LoveDA).

respectively, while Vaihingen attains its best performance near 𝛼 = 0.5 

with an mIoU close to 87 %. LoveDA, despite having lower absolute val-

ues, also benefits from stronger bottleneck regularization and shows its 

highest score at 𝛼 = 0.8. These observations indicate that although 𝛼 

is critical in balancing segmentation loss and bottleneck regularization, 

the model remains stable in a moderate range, confirming that setting 𝛼 

between 0.5 and 0.8 is a robust choice across different datasets.

7. Complexity and inference speed analysis

To further evaluate the practicality and efficiency of the proposed 

GIB-RSS model, we compare its computational complexity and infer-

ence speed with several representative baseline methods on the LoveDA 

test set. As shown in Table 6, the comparison includes the number of 

model parameters (denoted as “Complexity (M)”) and inference speed 

measured in frames per second (FPS). All measurements are conducted 

using 1024 × 1024 input resolution on a single NVIDIA GTX 3090 GPU. 

Our GIB-RSS achieves a competitive trade-off between performance 

and efficiency. Specifically, it requires 87.9 million parameters and 

achieves 61.7 FPS, which is significantly faster than most Transformer-

based models such as TransUNet (13.4 FPS), Segmenter (14.7 FPS), 

and DC-Swin (23.6 FPS), while maintaining a much smaller parame-

ter size compared to models like TransUNet (803.4 M) or SwinUperNet

Fig. 5. Visualization of the segmentation results of different models on the Postdam dataset.

Table 6 

Quantitative comparison on the LoveDA test set against other networks. 

Complexity and inference speed are evaluated using 1024 × 1024 inputs with a 

single NVIDIA GTX 3090 GPU.

Method Backbone Complexity (M) Speed (FPS)

PSPNet ResNet50 105.7 52.2

DeepLabV3+ ResNet50 95.8 53.7

SemanticFPN ResNet50 103.3 52.7

FarSeg ResNet50 — 47.8

FactSeg ResNet50 — 46.7

BANet ResT-Lite 52.6 11.5

TransUNet ViT-R50 803.4 13.4

Segmenter ViT-Tiny 26.8 14.7

SwinUperNet Swin-Tiny 349.1 19.5

DC-Swin Swin-Tiny 183.8 23.6

UNetFormer ResNet18 46.9 115.3

GIB-RSS — 87.9 61.7

(349.1 M). Although slightly larger than UNetFormer (46.9 M), GIB-RSS 

outperforms it in segmentation accuracy, as shown in Table 5. This re-

sult demonstrates that GIB-RSS not only provides strong segmentation 

accuracy but also maintains practical runtime efficiency and model size, 

making it suitable for deployment in real-world remote sensing systems.

8. Visualization of segmentation results

As shown in Figs. 5–7, we also intuitively display the segmentation 

results of the model. The visualized segmentation results demonstrate 

the effectiveness of our designed GIB-RSS in dealing with challenging 

irregular objects.

Specifically, in Fig. 5, we see that GIB-RSS can more accurately seg-

ment trees and buildings than other SOTA models, and the cases of 

incorrect segmentation are relatively small. Other models easily misclas-

sify lowveg. categories as background categories, and they fail to learn 

better for building category boundaries. In particular, in the first row of 

images, existing methods cannot segment the tree category well, either 

identifying it as background or identifying it as other categories. In the 

second row of pictures, existing comparison methods cannot segment 

some relatively small categories well, while GIB-RSS can segment small 

irregular objects better. In the third row of images, GIB-RSS can better 

segment the boundary areas of two different categories.

As shown in Fig. 6, our proposed model is more clearly distinguishes 

the difference between trees and lowveg. The experimental results show 

that GIB-RSS more effectively learn the boundary information between 

different categories. The class boundary learning ability of other mod-

els is significantly worse than GIB-RSS. Specifically, in the first row of

Neurocomputing 658 (2025) 131662 

9 



Y. Shou, T. Meng, W. Ai et al.

Fig. 6. Visualization of the segmentation results of different models on the Vaihingen dataset.

Fig. 7. Visualization of the segmentation results of different models on the LoveDA dataset.

images, our method can better identify the background area, while other 

comparison methods easily misclassify the background area as a build-

ing category. In the second row of pictures, GIB-RSS can segment the 

tree category relatively completely, while other methods easily identify 

the tree category as a background category or other categories. In the 

third row of images, GIB-RSS can sensitively detect the boundary areas of 

categories, while other methods cannot correctly segment the boundary 

areas of categories.

As shown in Fig. 7, in the first row of images, existing methods can-

not correctly classify the tree category, but incorrectly classify it as the 

agriculture category. Unlike contrastive methods, GIB-RSS can well dis-

tinguish the difference between two categories and achieve better class 

boundary segmentation. In the second row of pictures, since the seg-

mented objects are relatively small, existing methods cannot perform 

fine-grained segmentation on them. GIB-RSS can segment small objects 

at fine granularity while also distinguishing differences between tree and 

background categories. In the third row of images, none of the existing 

comparison methods can segment the water category, while GIB-RSS can 

segment them accurately. Experimental results demonstrate the superior 

segmentation performance of the GIB method for irregular objects.

9. Ablation study

We conduct ablation studies of our model GIB-RSS on four segmen-

tation datasets to illustrate the effectiveness of our used modules.

Table 7 

Experimental results of different types of graph convolutional neural networks 

on datasets. We choose the mIoU value as our evaluation metric.

GraphConv UAVid Vaihingen Potsdam LoveDA

EdgeConv 69.5 84.4 86.9 53.6

GIN 68.7 83.6 86.7 53.1

GraphSAGE 68.6 83.4 86.2 52.7

GAT 70.6 85.3 87.8 54.1

9.1. Type of graph convolution

In experiments we explore the performance of three different 

graph convolution variants on segmentation, including EdgeConv, GIN, 

GraphSAGE, and GAT. As shown in Table 7, GAT achieves the highest 

accuracy with mIoU values of 79.6 %, 85.3 %, 87.8 % and 54.1 % on 

the four datasets. The effect of EdgeConv is second, with mIoU values 

of 69.5 %, 84.4 %, 86.9 % and 53.6 % on the four datasets. The effect 

of GraSAGE is worst, with mIoU values of 68.6 %, 83.4 %, 86.2 % and 

52.7 % on the four datasets. The performance improvement may be at-

tributed to GAT’s ability to capture key region information in the image.

9.2. The effects of modules in GIB-RSS

To illustrate that the modules (i.e., node-masking and edge-masking) 

proposed in this paper can better improve the performance of GNN

Neurocomputing 658 (2025) 131662 

10 



Y. Shou, T. Meng, W. Ai et al.

Table 8 

The effectiveness of the proposed three core modules (i.e., GNN, Node-Masking 

(NM), Edge-Masking (EM)) is verified by ablation experiments on the dataset. 

We choose the mIoU value as our evaluation metric.

GNN NM EM UAVid Vaihingen Potsdam LoveDA

✓ ✘ ✘ 67.5 81.8 86.2 53.0

✓ ✓ ✘ 68.0 81.7 85.4 53.6

✓ ✘ ✓ 68.2 82.3 86.5 53.8

✓ ✓ ✓ 70.6 85.3 87.8 54.1

Table 9 

The influence of different number of neighbor nodes 𝐾 on the experimental 

results. We choose the mIoU value as our evaluation metric.

𝐾 UAVid Vaihingen Potsdam LoveDA

3 66.7 82.5 84.4 52.1

6 67.6 82.9 85.8 52.7

9 67.8 83.3 85.9 52.9

12 68.9 84.2 86.6 53.6

15 70.6 85.3 87.8 54.1

18 69.3 83.9 87.0 53.6

in the field of image segmentation, we verify the effect of these mod-

ules through ablation studies. We use node mask view and edge mask 

view with information bottleneck criterion to improve the generaliza-

tion ability of the model. From Table 8 we can see that the performance 

of image segmentation using graph convolution alone is not compet-

itive. The accuracy of segmentation can be improved by introducing 

node-masking and edge-masking. Specifically, the model performs best 

when using both node mask and edge mask views, with mIoU values of 

70.6 %, 85.3 %, 87.8 % and 54.1 % respectively. When only using the 

node mask view, the effect of the model is second, with mIoU values of 

68.2 %, 82.3 %, 86.5 % and 53.8 % respectively. The model has the worst 

performance when the node mask and edge mask views are not used, 

with mIoU values of 67.5 %, 81.8 %, 86.2 % and 53.0 % respectively. 

In summary, applying GIB directly on GCN yields limited improve-

ments, confirming that original GIB may over-suppress rare features 

in imbalanced graphs. By contrast, our adaptive masking instantiation 

consistently boosts performance, demonstrating the necessity of extend-

ing GIB to view-specific regulation. These results empirically reveal 

limitations of the original GIB and verify our theoretical extension.

9.3. The number of neighbors

The number of neighbor nodes 𝐾 is a hyperparameter controlling 

information aggregation. Too few neighbor nodes will lead to low fre-

quency of information exchange, and the global position information 

cannot be fully extracted, while too many neighbors will lead to over-

smoothing of the model. Based on the above analysis, we adjusted the 

range of 𝐾 from 3 to 18, and the results are shown in Table 9. When 

the number of neighbor nodes 𝐾 is 15, the segmentation effect is better. 

When the number of nodes 𝐾 is less than 15, the effect of the model 

increases as the number of 𝐾 increases, and when 𝐾 is greater than 15, 

the training effect of the model begins to show a downward trend. The 

above phenomenon is consistent with our analysis.

10. Potential applications in low-shot and zero-shot settings

Although the proposed GIB-RSS framework is primarily designed 

for fully supervised remote sensing segmentation tasks, its architectural 

characteristics naturally lend themselves to extension in data-scarce en-

vironments such as low-shot or zero-shot learning. We briefly outline the 

potential directions for applying GIB-RSS in these challenging settings. 

(1) Self-Supervised Pretraining for Low-Data Segmentation. Inspired by 

recent work such as Unsupervised Pre-training with Language-Vision 

Prompts for Low-Data Instance Segmentation [50], GIB-RSS can be

adapted as a self-supervised pretraining module. Specifically, our graph 

contrastive learning mechanism, coupled with the information bottle-

neck, can learn structure-aware and task-relevant representations from 

unlabeled remote sensing data. These pretrained representations can 

then be fine-tuned on downstream segmentation tasks with limited an-

notations, offering a promising route to enhance label efficiency. (2) 

Generalization to Unseen Categories via Feature Synthesis. The robust 

semantic feature modeling capabilities of GIB-RSS also make it po-

tentially applicable to zero-shot segmentation or detection tasks. For 

example, the memory-based region synthesis strategy employed in M-

RRFS [51]: A Memory-based Robust Region Feature Synthesizer for 

Zero-shot Object Detection can be integrated with our graph-based 

node representation to transfer knowledge across categories. By aligning 

graph embeddings with class-level semantic prototypes or external lan-

guage features, the GIB-RSS framework could enable segmenting unseen 

object categories in remote sensing images. (3) Structural Robustness 

under Low-Resource Conditions. The adaptive masking mechanism in 

our method selectively retains the most informative nodes and edges 

during contrastive training. This selective learning process may inher-

ently boost robustness under low-shot settings, where overfitting to 

limited data is a risk. Moreover, the information bottleneck objective 

discourages memorization of noise or irrelevant features, which further 

enhances generalization.

11. Conclusions

In this paper, we regard images as graph data and introduce GNN to 

perform remote sensing image segmentation tasks, which can flexibly 

model irregular objects. To extract the global contextual location infor-

mation in the image, we introduce a multi-head attention mechanism 

for global information extraction. Furthermore, we introduce a feed-

forward network for each node to perform feature transformation on 

node features to encourage information diversity. In addition, in order 

to accelerate the convergence speed of GNN, we introduce the informa-

tion bottleneck theory for graph comparison learning. We argue that a 

good augmented view should be structurally heterogeneous but seman-

tically similar. Experimental results prove the superiority of our model 

GIB-RSS.
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