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ARTICLE INFO ABSTRACT

Communicated by J. Han Remote sensing segmentation has a wide range of applications in environmental protection, urban change de-
tection, etc. Despite the success of deep learning-based remote sensing segmentation methods (e.g., CNN and
Transformer), they are not flexible enough to model irregular objects. In addition, existing graph contrastive
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Remote sensing segmentation learning methods usually adopt the approach of maximizing mutual information to keep the node representations
Graph learning consistent between different graph views, which may cause the model to learn task-independent redundant in-
Contrastive learning formation (i.e., information unrelated to the downstream task, including both redundancy and noise.). To tackle
Information bottleneck the above problems, this paper treats images as graph structures and introduces a novel Graph Information

Bottleneck for Remote Sensing Segmentation (GIB-RSS) architecture. Specifically, we construct a node-masking
and edge-masking graph view to obtain an optimal graph structure representation, which can adaptively learn
whether to mask nodes and edges. Here, the optimal graph structure representation refers to the refined node and
edge embeddings derived from the masked graph views under the GIB objective, where task-relevant structural
information is preserved while task-irrelevant redundancy and noise are suppressed. Furthermore, this paper
innovatively introduces information bottleneck theory into graph contrastive learning to maximize task-related
information while minimizing task-independent redundant information. Finally, we replace the convolutional
module in UNet with the GIB-RSS module to complete the segmentation and classification tasks of remote sens-
ing images. Extensive experiments on publicly available real datasets demonstrate that our method outperforms
state-of-the-art remote sensing image segmentation methods.

1. Introduction structure. Both of the above methods are unable to model irregular ob-
jects [7]. As shown in Fig. 1(c), we argue that both grid and sequence
structures are special cases of graph structures and that GNN-based ap-
proaches [8-11] are capable of modeling data in non-Euclidean spaces.
For instance, the vision GNN proposed by Han et al. [7] extracts low-
level information about the image by treating the image as a graph
structure. Therefore, we propose a GNN-based remote sensing image
modeling method for multi-scale feature extraction of irregular objects.
However, the convergence speed and convergence effect of GNN are
unsatisfactory [12].

Recent advances in graph contrastive representation learning have
demonstrated that it can improve model convergence and enhance
model robustness [13]. Nevertheless, the existing methods suffer
from two limitations. First, most existing methods perform feature
augmentation by randomly masking graph views to obtain better node
representations. However, randomly masking nodes and edges may

Remote sensing segmentation has been widely developed in a variety
of scenarios including, land cover mapping, environmental protection,
and road information extraction, which require high-quality feature rep-
resentations to be learned from irregular objects (e.g., roads, trees, etc.)
[1,2]. In recent years, thanks to the powerful modeling ability for image
data, convolutional neural networks (CNNs) [3] and Transformer with
attention module [4,5] have provided an effective way to extract the un-
derlying visual features and multi-scale features of images and exhibit
guaranteed performance in remote sensing segmentation [6].

Although encouraging segmentation performance has been achieved,
CNN-based and Transformer-based remote sensing segmentation mod-
els suffer from some limitations. Taking Fig. 1 as an example, Fig. 1(a)
shows the CNN-based image modeling method, which treats the image
as a regular grid structure. Fig. 1(b) shows the Transformer-based image
modeling method, which regards the image as a continuous sequence
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Fig. 1. Illustrative examples of different modeling approaches for an image. (a)
CNNs view images as regular grid structures (i.e., squares and rectangles). (b)
Transformer treats images as a continuous sequence structure. (c) We believe
that both sequence structure and grid structure are special cases of graph struc-
ture, and graph structure can flexibly model regular and irregular objects. We
thus view images as graph structures.

be too random, which destroys the expressive ability of the semantic
information of the original graph. Second, most existing methods gen-
erate multiple contrastive views and enforce consistency by maximizing
the mutual information (MI) between them (e.g., [13,14]). While this
strategy improves representation robustness, it also has a potential draw-
back: it may lead the model to preserve task-independent or redundant
patterns that exist across views but are not semantically informative for
downstream tasks. For example, GraphCL [13] applies random struc-
tural augmentations (such as node dropping and edge perturbation)
to generate graph views, and then maximizes MI between them. This
may encourage the model to retain low-level topological patterns that
are shared due to augmentation artifacts rather than task-relevant se-
mantics. Similarly, InfoGraph [14] attempts to maximize MI between
node-level and graph-level representations, but lacks explicit mecha-
nisms to suppress noise or irrelevant patterns that may be reinforced
by global pooling. In contrast, GIB [15] argues that effective representa-
tion learning in downstream tasks requires minimizing MI between the
original graph and its latent encoding, thus discarding redundant struc-
tural cues while preserving task-relevant information. However, existing
GIB-based frameworks usually assume random or fixed augmentations,
which fail to adapt to structural heterogeneity in graph-structured data.
In this paper, we reveal this limitation and propose an adaptive instan-
tiation that extends GIB to node and edge-level views, deepening its
theoretical foundation in graph contrastive learning.

To address the aforementioned issue, we propose a novel Graph
Information Bottleneck for Remote Sensing Segmentation (GIB-RSS)
method, which consists of two key steps, i.e., an adaptive feature aug-
mentation module and a graph contrastive learning via an information
bottleneck module.

First, we introduce a learnable graph contrastive view to adaptively
learn whether to mask nodes and edges to improve the node represen-
tation ability of the original graph, which is optimized together with
downstream remote sensing segmentation and classification in an end-
to-end learning manner. The intuition behind the adaptive masking
strategy is that random masking may discard minority class nodes, which
aggravates the data imbalance in the graph structure. However, GCNs
aggregate the information of surrounding neighbor nodes through the
message-passing mechanism, which makes it easy for GCNs to recon-
struct the feature information of popular nodes, but it is difficult to
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reconstruct the feature information of isolated nodes with low degrees.
These adaptively masking-generated graph contrastive views increase
the ability against imbalanced learning for remote sensing segmentation.

Second, we propose to integrate different graph-contrastive views
into compact representations for downstream remote sensing segmen-
tation tasks, which can further improve the feature representation
capabilities of nodes. Recent advances have shown that downstream per-
formance can be improved by fusing complementary semantic informa-
tion between different views [12]. Therefore, we argue that maximizing
the mutual information (MI) between graph contrastive views forces a
consistent representation of the graph structure, which leads the model
to capture task-independent redundant information. Inspired by the in-
formation bottleneck (IB) theory, we use it to minimize the MI between
the original graph and the generated contrastive view while preserving
task-relevant semantic information. Through the above approach, the
model can jointly learn complementary semantic information between
different views.

Compared with previous work, the contributions of this paper are
summarized as follows.

1. We propose a novel Graph Information Bottleneck for Remote
Sensing Segmentation (GIB-RSS) method, which enables flexible
modeling of irregular objects.

2. We introduce a novel graph contrastive learning approach to opti-
mize node representations by adaptively masking nodes and edges,
which improves the representation ability of graph structure.

3. We innovatively embed the information bottleneck theory into
the graph contrastive learning method, which can effectively
eliminate redundant information while preserving task-related
information.

4. Extensive experiments demonstrate that our method outperforms
the state-of-the-art on three publicly available datasets.

2. Related work
2.1. CNN, and transformer for remote sensing segmentation

The early mainstream network architecture for remote sensing seg-
mentation extracts visual features of images by using CNN. The earliest
remote sensing image segmentation methods based on CNN are all
evolved from FCN ([16,17], etc) and UNet (e.g., [18-20], etc). UNet
extracts the context and location information of the image by designing
a U-shaped structure based on the encoder and decoder, where both of
them are composed of convolutional layers, skip connections, and pool-
ing layers. FCN extracts image features through several convolutional
layers and then connects a deconvolutional layer to obtain a feature map
of the same size as the raw image, so as to predict the image pixel by
pixel. However, both FCN and UNet algorithms need to down-sample to
continuously expand the receptive field when extracting image features,
which leads to the loss of image position information. To alleviate the
problem of information loss caused by the downsampling operation, the
DeepLab series [21] uses hole convolution to increase the receptive field
to obtain multi-scale feature information. The HRNet proposed by Wang
et al. [22] achieves high-resolution semantic segmentation by extract-
ing feature maps of different resolutions and recovering high-resolution
feature maps.

Transformer [23,24] is widely used in the image processing field
because of its powerful global information processing capabilities. ViT
proposed by Dosovitskiy et al. [4] applied the Transformer architec-
ture to CV for the first time, and she used the attention to extract
global visual features. Since the complexity of the attention is O(n?),
this leads to a very large number of parameters in the model, and the
model is difficult to train. To solve the above problems, Liu et al. [5]
proposed Swin-Transformer, which improves the issue of high model
complexity through a hierarchical attention mechanism. The Wide-
Context Transformer proposed by Ding et al. [1] extracts global context
information by introducing a Context Transformer while using CNN
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to extract features. Zhang et al. [3] extract multi-scale contextual fea-
tures by combining Swin-Transformer and dilated convolutions and use
a U-shaped decoder to achieve image semantic segmentation.

2.2. Graph neural networks

Kipf et al. [25] were the first to propose graph convolutional neural
networks. In recent years, spatial-based GCNs and spectral-based GCNs
have started to receive widespread attention, and they are applied to
graph-structured data (e.g., social networks [26] and citation networks
[27], etc.).

In recent years, graph neural networks (GNNs) has received extensive
attention from researchers due to its powerful feature extraction capabil-
ities, and it has been widely used in action recognition [28], point cloud
analysis [29] and other fields [7]. GNNs can flexibly model irregular
objects and extract global location feature information. In the remote
sensing segmentation field, Saha et al. [30] use GNNs to aggregate and
label unlabeled data to improve the ability of the model to approach the
target domain.

2.3. Graph contrastive learning

Graph contrastive learning (GCL) aims to learn compact represen-
tations of nodes or subgraphs in graph data, emphasizing similarities
within the same graph and differences between different graphs. GCL has
been applied in many fields, including social network analysis, drug dis-
covery, image analysis, etc. For example, in social networks, similarities
between users can be discovered through GCL, and in drug discov-
ery, potential drug similarities can be mined by contrasting molecular
structures.

In recent research, DGI [31] and InfoGraph [14] obtain compact rep-
resentations of graphs or nodes by maximizing the mutual information
(MI) between different augmented views. MVGRL [12] argues that it can
achieve optimal feature representation by contrasting first-order neigh-
bor nodes and performing node diffusion to maximize the MI between
subgraphs. GraphCL [13] constructs four types of augmented views and
maximizes the MI between them. GraphCL enables better generalization
performance on downstream tasks. However, GraphCL requires complex
manual feature extraction. We argue that a good contrast-augmented
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view should be structurally heterogeneous while semantically similar,
while previous research work maximizes the mutual information be-
tween nodes, which may lead to overfitting of the model. To solve
the above issues, Wu et al. [15] introduced GIB to regulate redun-
dancy in graph representation. However, their formulation does not
consider the heterogeneity of contrastive graph views, nor the challenges
of imbalanced graph structures. In contrast, our work extends GIB by
integrating adaptive masking strategies and deriving graph-specific vari-
ational bounds, thereby deepening the theoretical understanding of GIB
in contrastive learning.

3. Approach

In this section, we illustrate the construction of graph-structured data
from images and introduce the GCL architecture with the information
bottleneck to learn to extract global information locations of images.

3.1. Structure flow

Our main goal is to design an efficient modeling paradigm for global
location information extraction of irregular objects, detailed in Fig. 2.
For a given remote sensing image (H X W x 3), we first divide it into
M patches. Then we map each image patch to a D-dimensional feature
space x; € RP, and obtain a collection of feature vectors for an im-
age X. We consider X to be a node in the graph, i.e., V = {v;,v5, 0y }-
For node v;, we use the KNN algorithm to find its K neighbors N(v;) =
{v},0%,...,vK}. For v; € N(v)), we connect an edge e;; from v; to
v;. Through the above process, we get a directed graph G = (V, E).
Following UNet’s network architecture design, feature embedding for
images uses N encoders for feature encoding. Each stage consists of
a GIB Embedding block, a skip connection module and a downsam-
pling layer. GIB Embedding Block utilizes the inherent flexible modeling
of non-Euclidean distance in the graph structure, follows the global
modeling rules of node aggregation, and customizes the global position
information interaction of the image. We downsample the feature maps
with a 3 x 3 kernel. Similarly, the decoder stage consists of the proposed
GE block and an upsampling layer to decode and reconstruct features. To
ensure the effective utilization of information and the depth of network
training, the decoder input of each stage is connected with the output of
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Fig. 2. The architecture of the proposed GIB-RSS method. Specifically, we first divide the image into patches and construct it as a graph. Then we replace the
convolutional block in UNet with our GCN Block and use the constructed graph as the input. Finally, we build an MLP to classify pixels.



Y. Shou, T. Meng, W. Ai et al.

the encoder of the same stage. Finally, a convolutional layer is applied
to generate the segmented image .S € C;, x H X W, which is predicted
pixel by pixel.

3.2. GCN embedded block

The advantages of using a graph structure to model images are as
follows: (1) The graph can flexibly handle data with non-Euclidean dis-
tances. (2) Compared with regular grid or sequence structures, graphs
can model irregular objects while eliminating redundant information,
and remote sensing images are mostly irregular objects. (3) The graph
structure establishes the connection between objects (e.g., roads, trees,
etc) through the connection between nodes and edges.

Specifically, for an input image feature X, we first construct a di-
rected graph G = G(x). To obtain the global location information of the
image and update node features, we use graph convolution operations to
aggregate and update node features. The formula is defined as follows:

G' = F(G,W)
= Update (Aggregate (G, Woge ) Wopdate )
®
- 1 (O HOMO] Oy (D (D
= LeakyReLU z z W (a)l.j VV&, x;' + VV92 X; )
rerR jej\[i’ i
where W.., Wipgares We(ll),Wg(z” is learnable weights, w;; is the edge

weight between node i and node j, and its formula is defined as follows:

a)l(.j.“) = softmax (W(’)[xl(.” ® xE.”])

exp [x,(.” @ xi.”] (2)

W 0]
Zoen, Xp |x;” © x; ]

To capture the location information of key regions in the image,
we further introduce a multi-head attention mechanism to update node
features. The format is defined as follows:

21172
head VVupdate,.

X = [head' wl

update °

- head Wi, | 3)
where h represents the number of multi heads, we set 7 = 4.

We introduce the residual idea, and project node features to the
same domain through a linear layer, which can help restore structural
features and global position information. In addition, we also insert
the LeakyReLU non-activation function to improve the nonlinear fitting
ability of the model. The formula is expressed as follows:

Y = LeakyReLU (GraphConv (X W, )) Wy + X 4

To improve the feature transformation ability of nodes and alleviate
the over-smoothing phenomenon of GCN, we use feed-forward network
(FFN) to perform feature mapping on each node again. The formula for
FFN is defined as follows:

Y’ = LeakyReLU (YW,) W, +Y )
where W} and W, are the learnable parameters.

3.3. Graph information bottleneck

The principle of graph information bottleneck (GIB) [15] is to in-
troduce information bottleneck (IB) on the basis of GCL to perform
contrastive learning between nodes or graphs. It forces the node repre-
sentation Zy to minimize the task-independent redundant information
D and maximize the information Y relevant to the downstream tasks.

Specifically, we follow the local dependency assumption for graph-
structured data: for a given node v, node v’s first-order neighbor node
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data are related to node v, while the rest of the graph’s data are indepen-
dent and identically distributed with respect to node v. The hypothesis
space represented by nodes can be constrained according to local depen-
dency assumptions, which reduces the difficulty of GIB optimization. We
assume that P(Z x| D) represents modeling the correlation between node
features hierarchically. In each iteration /, the representation of each
node is optimized by aggregating surrounding neighbor node informa-
tion and graph structure information ZX). Therefore, the optimization
goal of GIB is defined as follows:

min  GIB,(D,Y; z) 2 [—I(Y;Z§(L>)+ BI(D: Zg(“)] 6)
IP(Z§(L)|D)eQ

where Q conforms to the representation space of Markov chain prob-
ability dependence within a given data set D, I(,) represents mutual
information between feature vectors, Z;L) represents the feature repre-
sentations of the nodes, and f is the balance coefficient. In Eq. (6), the
model only needs to optimize two distributions, i.e., IP(Z;”lZ%_I),A),
and IP(Z;NZ%’” , ZX)), where ZX) is the graph structure information.

(L)
x )

and I(D; ZE(L)) is a difficult estimation problem. Therefore, we follow the

However, in Eq. (6), calculating the mutual information I(Y; Z

1B criterion to introduce variational bounds on I(Y; ZEXL)) and I(D; Z;L))
to effectively perform parameter optimization. We give the upper and
lower bounds of I(D; ZE(D) and I(Y; ZE(L)) as shown in Theorems 1 and
2 respectively.

Theorem 1. For any class distribution given QI(YU|Z§(L)U) for v eV and

Q,(Y) in a graph, we can obtain a theoretical lower bound for I(Y; ZI(XL) ):

Moer QY128
1V ZP) > 1 + E|log 25— %07
( x )= 1+E]log &)
)
HUEV QI(YU|Z§(I:)U)

E
* X%)

]P’(Y)]P’(ZE(L))

Theorem 2. For any given node feature distribution Q(Zgé)) and graph
structure information distribution Q(Z 51”), we use Markov chain dependence
to derive the upper bound of 1(Y; ZE(L)) as follows:

. (L) . ) ) ] (/)
I(D,ZX ) < I(D,{ZX hesy, YU (28 }IGSA) < Y ABY+ Y xiB

1€S, IeSY
(8)

wherel € {Sy,S,}, and

Pz, 20
ABY =E [log A—U)X

z)

pz0) 24V, z0)

XIBY =E [log #U)A 9
zP)

where AIB and XIB represent the adjacency matrix features and the node
features obtained using the IB criterion, respectively.

We optimize P(Zg)lzﬁ_”, A) and IP’(Z%) | Z;“'), Z;’)) given a theoreti-
cal upper and lower bound. Next, we will specify the optimization goals
of GIB.

Objective for training. To update model parameters in GIB, we
need to calculate the theoretical boundary of GIB in (6). Specifically,
we use a uniform distribution to optimize the classification problem:

iid 1

Zy ~ QZy),Zy, = U € Vulu~ Cat(=)}. Therefore, we can
- ot
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obtain an estimate of AIB" as follows:

as” =k 10)

Pz"|A, 20D
log—4 " X 7

Qzy)

1 -1
Pz{14.207") [

AIB® can be formally defined as follows:

1
Z KL <Cat(¢f}?)|| Cat ( T >> 11

veV 1e[T]

—(/
AB." =

For the estimation of XIB, we use a learnable Gaussian distribution
to set Q(ng). Specifically, for a given node v, Zy ~ Q(Zy), we assume

=0
Zx, ~ X, w;Gaussian(uy agi). Therefore XIB' is formally defined as
follows:

0 pzP1z(™", z0)
XIB ' =log —
z)
. 12)
= Z log @(Zgé?vg Hys 03) —log (Z w,@(Z;)J); Ho.is O-é,i >:|
veV i=1

where p;, 0y, w; are the learnable.
Combining Egs. (11) and (12), we can estimate I(D; Z ;L)) as follows:

10:zP) ~ Y AB” + Y B’ 13)

1€S, €Sy
We use cross entropy to estimate I(Y; ZE(L)) as follows:

1Y, Z}L)) - — Z Cross—Entropy(Z;L)U outs Yo) 14

vey

By combining Eqgs. (13) and (14), we can obtain the optimization
objective of GIB.

3.4. Instantiating GIB-RSS

After detailing the optimization principles of GIB, we will explain the
GIB-RSS architecture we designed as shown in Fig. 3. It is worth noting
that this instantiation is not a simple application of GIB. By introducing
learnable node- and edge-masking, we uncover a limitation of original
GIB—random augmentations may discard rare but task-critical nodes.
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Our adaptive implementation extends GIB to heterogeneous multi-view
contrastive learning, providing a new paradigm where the bottleneck is
optimized not only within a single view but across multiple structurally
diverse views.

Node-masking view. To improve the feature representation ability
of nodes in the learning process, we perform learnable node masking
before each information aggregation and feature update of GCN. The
formula for the node mask view we created is as follows:

oy ={{vion1sev}.er W}, as)
where nfl) € {0, 1} is sampled from a parameterized Bernoulli distribu-

()

i

tion Bern(w!), and f’)
keeping node v;.
Edge-masking view. The goal of the edge-masking view is to gener-

ate an optimized graph structure, and the formula is defined as follows:

= 0 represents masking node v;, n,”’ = 1 represents

() _ )
Sy ={v.{es0n) le; e RW}, ae)

where ng.) € {0, 1} is also sampled from a parameterized Bernoulli dis-

tribution Bern(), and ’72) = 0 represents masking edges e;;, n(l) =1

i
represents keeping edge e;;.

To enable the model to adaptively learn whether to mask nodes and
edges, we introduce learnable parameters for nodes and edges as follows:

&= (e@) ;@D = ([e(.”;e(.l)] ) , a”
i i i ij ij i J

where wf.l) and wf.l.) are the learnable parameters.

To efficiently optimize the multi-view structure learning in an end-
to-end manner, we adopt the reparameterization trick [32] and relax
the binary mask variable p from being sampled directly from a Bernoulli
distribution to a deterministic and differentiable function of a learnable
parameter » and an independent random variable ¢, formulated as:

p=(,<w>, (18)

T

where € ~ Uniform(0,1), ¢ € R* is the temperature, and o(-) is the sig-
moid function. This relaxation ensures smooth gradients 3—:, enabling

Fig. 3. The overview of the GCN Embedded Block framework. We generate two contrastive graph views through learnable node masking and edge masking mech-
anisms. Each view is encoded via GCN-based embeddings to produce E, , (node-masked embeddings) and E, (edge-masked embeddings), respectively. Both are
passed through shared MLPs to compute representations E, which are then regularized using the graph information bottleneck objective. The mutual information
between the input graph structure and each embedding is minimized to remove redundant task-independent redundant information. The final loss combines the

supervised segmentation loss £, and the bottleneck regularization loss £,.
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efficient end-to-end optimization of the learnable Node-Masking and
Edge-Masking views.

In practice, the logits w are generated by lightweight neural networks
implemented as a multilayer perceptrons (MLPs) with two linear layers.
For the node mask network, the input is the node feature vector output
from the previous GCN layer, which passes through a MLPs and outputs
a scalar logit; applying the sigmoid function yields the node retention
probability. For the edge mask network, the input is the concatenated
feature vectors of the two endpoint nodes [e,-;ej], which are fed into
a similar MLPs to produce the edge retention probability. These net-
works are lightweight auxiliary modules, independent from but trained
jointly with the GCN layers. While their parameters are not shared with
the GCN, they are conditioned on the evolving graph embeddings, al-
lowing masking decisions to adapt dynamically to the representation
learning process. During training, node or edge dropping is guided by
the learned probabilities, while at inference we drop nodes or edges with
a probability less than 0.5 to maintain structural consistency.

After obtaining the masked node and edge-masking views, we in-
put them into GCN for feature representation to obtain optimized
multi-views. The formula is defined as follows:

) (I=1) A1)
EY, = GraphConv (EY .60, ).
(19)

o _ I=1) ()
EED—GraphConU (EED ,QED).

where GraphConv represents the graph convolution operation, and
we choose GAT as our graph encoder. Eyp and Ej, represent the
node feature representations of node-masking view and edge-masking
view respectively, Gyp and Gpj represent node-masking view and
edge-masking view respectively.

After obtaining the node mask and edge mask views, we combine
Egs. (13) and (14) to jointly optimize the self-supervised losses £, and
L, as follows:

min(L, + £,) = [(DEP: 2 EP) + 1(v; 2 EP)
+ IOV Z 8NP 1z (20)

where DD and DIND) represent the graph structure of the node-
masking and edge-masking views respectively, and Z;E D) and Z;N b
represent the node features of the node-masking and edge-masking
views respectively. Notably, we do not introduce additional loss terms
or regularization for mask selection. The mutual information loss func-
tions (e.g., XIB® and AIB® in Eqgs. (11) and (12) inherently su-
pervise the learning of meaningful and sparse masks by encouraging
the embeddings to preserve task-relevant information while discarding

task-independent redundancy.

3.5. Model training

All components of the proposed GIB-RSS architecture are trained
jointly in an end-to-end fashion. The encoder—decoder structure, com-
posed of multiple GIB Embedded Blocks, is fully differentiable. Each
GIB block processes the graph at a different resolution level, follow-
ing the UNet design, and contributes to the final segmentation output.
Importantly, all GIB blocks share a unified training process and are op-
timized simultaneously, rather than in a stage-wise or separate manner.

During training, we optimize a total loss function that consists of two
parts:

* Supervised segmentation loss L., which encourages accurate pixel-
level classification on labeled remote sensing images.

+ Graph information bottleneck loss on two contrastive views (node-
masked and edge-masked), which regularizes the mutual informa-
tion between node representations and graph structures, denoted as
L. and L, respectively.
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The final objective function is defined as:

Lig = Lyeg +a- (Lo +L,) 21

seg

where « is a balancing hyperparameter. The supervised loss L, is the

cross-entropy loss defined in Eq. (20). The bottleneck losses £(N}RS and
EE?B are derived from the upper and lower bounds of mutual information
as defined in Egs. (13) and (14), computed independently for each view.

All model parameters, including the GIB block parameters, multi-
head attention weights, Bernoulli masking generators, and pixel clas-
sifiers, are updated jointly via backpropagation using the AdamW
optimizer. This end-to-end training scheme ensures that the model learns
semantically meaningful and task-relevant node representations, while
effectively suppressing redundant information.

4. Experiments

In this section, we verify the effectiveness of the proposed GIB-RSS
on remote sensing image segmentation tasks.

4.1. Benchmark datasets used

For the GIB-RSS model, we use the widely used datasets UAVid [33],
Vaihingen [34] and Potsdam [35] datasets for experimental evaluation.
The UAVid dataset comes with two spatial resolutions. Specifically, the
UAVid dataset contains a total of 420 images, and each image is cropped
to a size of 1024 x 1024. The Vaihingen dataset consists of 33 images
with a spatial resolution of 2494 x 2064. Each image is cropped to 1024
x 1024. The Potsdam dataset contains 38 image patches with a spa-
tial resolution of 6000 x 6000, and we crop the original image size to
1024 x 1024. The LoveDA dataset contains 5, 987 high-resolution re-
mote sensing images with size 1024 x 1024, 2522 images are used for
training, 1669 images are used for validation, and 1796 images are used
for testing. The data information of the dataset is shown in Table 1.

4.2. Experimental settings

GIB-RSS is implemented on NVIDIA A100 GPU with 80 G memory
using PyTorch framework. For the hyperparameters in the experiments,
the paper utilize the AdamW optimizer for gradient updates. The GIB-
RSS’s learning rate (LR) is set to 5e-4 and a cosine learning rate decay is
utilized to dynamically adjust the LR. During model training, we use a
random flip strategy for data augmentation. For the UAVid dataset, we
crop the image size to 1024 x 1024. For Vaihinge, Potsdam datasets, we
crop images to 512 x 512. When the GIB-RSS is trained, we set epoch to
80, and batch size to 32.

4.3. Evaluation metrics

We used multiple evaluation metrics to evaluate the experimental
performance of all models, including Overall Accuracy (OA), meanF1,
and mloU. OA, F1 and mIOU reflect the accuracy of remote sensing
image segmentation from different perspectives.

4.4. Baseline models

MSD: The Multi-Scale-Dilation (MSD) method proposed by Lyu et al.
[33] achieves image segmentation by using a large-scale pre-trained
model to extract multi-scale features of the image.

Table 1
The division of the train set, val set and test set in the benchmark dataset and
the resolution information of the images.

Datasets Resolutions Train Test Val
UAVid 3840 x 2160/4096 x 2160 200 150 70
Vaihingen 2494 x 2064 15 17 1
Potsdam 6000 x 6000 22 14 1
LoveDA 1024 x 1024 2522 1796 1669
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CANet: The Context Aggregation Network (CANet) proposed by Yang
et al. [36] effectively extracts the spatial information and global in-
formation of the image by building a dual-branch CNN and uses an
aggregation mechanism to fuse the spatial and global context informa-
tion.

DANet: The dual attention network (DANet) proposed by Fu et al.
[37] achieves the extraction and fusion of global and local semantic
information in space and channels.

SwiftNet: SwiftNet proposed by Orsic et al. [38] uses a pyramid
structure to perform feature fusion of local information. SwiftNet adds
regularization terms to constrain the model during the optimization
process.

BiSeNet: The Bilateral Segmentation Network (BiSeNet) proposed by
Yu et al. [39] extracts spatial information and high-resolution features
by setting small-stride spatial convolution kernels. At the same time, a
down-sampling strategy is used to extract contextual information, and a
fusion module is designed to achieve effective fusion of information.

MANet: The multi-attention network (MANet) proposed by Li et al.
[40] reduces the computational load of the model by constructing a
linear attention module to ensure modeling context dependencies.

ABCNet: The Attention Bilateral Context Network (ABCNet) pro-
posed by Li et al. [41] can lightweightly extract spatial information and
contextual information of images.

Segmenter: Segmenter proposed by Strudel et al. [42] introduces
ViT to realize the modeling of global context information. Unlike CNNs,
Segmenter can obtain class labels pixel by pixel.

SegFormer: SegFormer proposed by Xie et al. [43] combines
Transformer and MLP to extract multi-scale features of images in a
hierarchical manner.

BANet: Wang et al. [44] proposed a bilateral perception network
(BANet) to extract texture information and boundary information in
images in a fine-grained manner. BANet is based on the Transformer
pre-training model to achieve information fusion.

BoTNet: The BoTNet proposed by Srinivas et al. [45] integrates the
self-attention mechanism into the ResNet module to extract the global
context information of the image.

TransUNet: TransUNet proposed by Chen et al. [46] embeds
Transformer’s self-attention mechanism into the structure of UNet so
that the model can better capture the global relationship of the input
image.

ShelfNet: ShelfNet proposed by Zhuang et al. [47] adopts a multi-
resolution processing strategy, which processes input images at different
levels. Such a design allows the network to better capture local details
in the image while retaining the global information of the image.

CoaT: CoaT proposed by Xu et al. [48] adopts a co-scaling mecha-
nism to maintain the integrity of the Transformers encoder branch at
different scales and provides rich multi-scale and contextual informa-
tion.
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UNetFormer: UNetFormer proposed by Wang et al. [49] intro-
duces the Transformer mechanism based on UNet. In UNetFormer,
Transformer is used to better capture the global contextual information
in the image and improve the model’s ability to understand the overall
structure.

5. Results and discussion

To illustrate the superiority of our proposed method GIB-RSS,
we conduct experiments on four benchmark datasets (i.e., UAVid,
Vaihingen, LoveDA, and Potsdam). The experimental results are shown
in Tables 2-5. GIB-RSS outperforms the existing state-of-the-art compar-
ison algorithms.

Specifically, on the UAViD dataset as shown in Table 2, GIB-RSS’s
mloU value is 70.6 %, which is 3 % to 11 % higher than other models.
The segmentation accuracy in other categories is also better than other
comparison algorithms. For example, the IoU values of segmentation
on cluster, road, tree, and vegetation have all reached SOTA, which is
significantly better than existing methods. Although the IoU values on
building, moving car, and human are not optimal, the difference from
the best segmentation results is relatively small. Among other compari-
son algorithms, UNetFormer’s effect is slightly lower than our algorithm,
with an mIoU value of 67.8 %. We believe this is due to the fact that
the architecture we designed is more suitable for segmenting irregular
objects. Except for UNetFormer, the mIoU values of other comparison
algorithms are significantly lower than the method GIB-RSS proposed in
this paper.

On the Vaihingen dataset as shown in Table 3, GSIB-RSS’s mIoU value
is 85.3 %, which is 2 % to 6 % higher than other models. OA and meanF1
values are also higher than other methods. Specifically, the segmenta-
tion IoU value of our method GIB-RSS in four categories is significantly
better than that of other comparison algorithms. It is only lower than
some comparison algorithms (e.g., UNetFormer and Segmenter, etc.) in
the tree category. The effect of UNetFormer is second, its mIoU value is
67.8 %, which is 1.8 % lower than GIB-RSS. The segmentation effects
of other comparison algorithms are significantly lower than GIB-RSS
and UNetFormer, even if they use some pre-trained models with better
performance.

On the Potsdam dataset as shown in Table 4, GIB-RSS’s mloU value
is 87.8 %, which is 1 % to 12 % higher than other models. Our algo-
rithm GIB-RSS is significantly better than other comparison algorithms
in the segmentation effects of all categories. Similarly, UNetFormer
has the second best segmentation effect on the Potsdam dataset, with
an mloU value of 87.4 %. Other comparison algorithms usually use
pre-trained models such as ResNet or ViT as backbones to fine-tune
downstream tasks. Although the segmentation effect on the Potsdam
dataset is acceptable, it is lower than GIB-RSS.

On the LoveDA dataset as shown in Table 5, GIB-RSS can achieve
optimal segmentation results in all categories. In addition, GIB-RSS has

Table 2

Experimental results of our method and SOTA methods on the UAVid dataset. The optimal values in columns are shown in bold.
Methods Backbone Clutter Building Road Tree Vegetation MovingCar StaticCar Human mloU
MSD - 56.8 79.6 73.9 73.9 56.1 63.2 31.8 20.0 56.9
CANet - 65.8 87.0 61.9 78.8 77.9 48.0 68.5 20.0 63.5
DANet ResNet 65.1 86.2 78.0 77.9 60.9 60.0 47.1 8.9 60.5
SwiftNet ResNet 63.9 84.9 61.3 78.3 76.4 51.2 62.4 15.8 61.8
BiSeNet ResNet 64.5 85.8 61.0 78.1 77.1 48.8 63.2 17.4 62.0
MANet ResNet 64.4 85.1 77.9 77.4 60.5 67.5 53.4 14.6 62.6
ABCNet ResNet 67.3 86.1 81.5 79.7 63.3 69.2 48.3 13.6 63.6
Segmenter ViT-Tiny 63.7 85.2 80.1 77.0 58.1 58.4 35.3 13.9 59.0
SegFormer MiT-B1 67.3 87.3 79.8 80.1 62.7 71.7 52.7 29.3 66.3
BANet ResT-Lite 65.9 86.0 81.2 79.1 61.9 68.7 52.4 20.5 64.4
BoTNet ResNet 65.4 85.1 79.1 78.4 61.2 66.3 52.0 23.1 63.8
CoaT CoaT-Mini 68.9 89.1 79.8 80.4 61.7 69.5 60.2 19.1 66.1
UNetFormer ResNet 67.7 86.4 82.0 81.2 64.1 74.0 55.8 30.9 67.8
GIB-RSS - 71.2 89.0 83.0 81.9 79.7 70.6 59.3 29.9 70.6
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Table 3

Experimental results of our method and SOTA lightweight methods on the Vaihingen dataset. The optimal values in columns are shown in bold.
Methods Backbone Imp.suf. Building Lowveg. Tree Car MeanF1 OA mloU
DABNet - 88.0 89.1 73.9 85.0 59.9 79.2 83.9 69.9
ERFNet - 88.7 89.8 76.2 86.1 54.0 79.0 86.2 70.3
BiSeNet ResNet 88.7 90.7 81.0 87.1 72.9 84.1 86.6 76.3
PSPNet ResNet 88.8 929 81.8 88.1 44.2 79.2 88.0 76.1
DANet ResNet 89.7 94.1 81.9 86.9 44.6 79.4 87.6 69.6
FANet ResNet 91.2 94.1 83.1 88.7 72.0 85.8 90.0 76.0
EaNet ResNet 92.1 94.7 829 88.8 80.4 87.8 90.0 78.5
ShelfNet ResNet 92.1 94.8 84.1 88.9 78.0 87.6 90.1 77.9
MARsU-Net ResNet 91.8 94.8 84.1 89.0 78.2 87.6 89.7 78.9
SwiftNet ResNet 91.9 95.1 83.6 89.6 80.6 88.2 90.0 79.2
ABCNet ResNet 93.1 94.8 84.8 90.0 84.7 89.5 91.2 81.0
BoTNet ResNet 90.0 91.6 82.4 89.1 72.4 85.1 87.8 74.2
BANet ResT-Lite 91.6 94.8 84.0 90.3 87.2 89.6 90.5 81.4
Segmenter ViT-Tiny 90.1 92.6 80.7 90.3 68.2 84.4 87.6 73.7
UNetFormer ResNet 93.1 94.9 85.2 90.8 88.2 90.4 90.7 83.2
GIB-RSS - 94.7 96.8 86.8 89.9 91.5 91.8 92.9 85.3

Table 4

Experimental results of our method and SOTA lightweight methods on the Potsdam dataset. The optimal values in columns are shown in bold.
Methods Backbone Imp.suf. Building Lowveg. Tree Car MeanF1 OA mloU
ERFNet - 89.9 92.6 81.0 76.4 90.8 86.2 84.6 75.9
DABNet - 90.0 92.7 83.3 81.9 93.1 88.0 87.2 79.4
BiSeNet ResNet 90.2 94.6 85.5 86.2 92.7 89.8 88.2 81.7
EaNet ResNet 92.0 95.7 84.3 85.7 95.1 90.6 88.7 83.4
MARsU-Net ResNet 91.4 95.6 85.8 86.6 93.3 90.5 89.0 83.9
DANet ResNet 91.0 95.6 86.1 87.6 84.3 88.9 89.1 80.3
SwiftNet ResNet 91.8 95.9 85.7 86.8 94.5 91.0 89.3 83.8
FANet ResNet 92.0 96.1 86.0 87.8 94.5 91.3 89.9 84.2
ShelfNet ResNet 92.5 95.8 86.6 87.1 94.6 91.3 89.9 84.4
ABCNet ResNet 93.5 96.9 87.9 89.1 95.8 92.7 91.3 86.5
Segmenter ViT-Tiny 90.9 94.6 84.9 84.7 89.1 88.7 89.3 81.1
BANet ResT-Lite 92.6 95.8 86.5 88.9 96.2 91.9 91.7 85.7
SwinUperNet Swin-Tiny 92.7 96.5 88.0 88.4 95.8 91.7 91.2 86.0
UNetFormer ResNet 93.8 96.9 88.1 89.3 96.8 93.1 91.0 87.4
Mask2Former IMP 88.4 92.9 83.1 84.0 86.00 - 87.5 86.9
GIB-RSS - 94.9 97.9 88.7 90.7 97.2 93.9 93.5 87.8

Table 5

Experimental results of our method and state-of-the-art methods on the LoveDA dataset. The optimal values in columns are shown in bold.
Methods Backbone Background Building Road Water Barren Forest Agriculture mloU Complexity Speed
PSPNet ResNet50 44.4 52.1 53.5 76.5 9.7 44.1 57.9 48.3 105.7 52.2
DeepLabV3+ + ResNet50 43.0 50.9 52.0 74.4 10.4 44.2 58.5 47.6 95.8 53.7
SemanticFPN ResNet50 42.9 51.5 53.4 74.7 11.2 44.6 58.7 48.2 103.3 52.7
FarSeg ResNet50 43.1 51.5 53.9 76.6 9.8 43.3 58.9 48.2 - 47.8
FactSeg ResNet50 42.6 53.6 52.8 76.9 16.2 42.9 57.5 48.9 - 46.7
BAnet ResNet50 43.7 51.5 51.1 76.9 16.6 449 62.5 49.6 52.6 11.5
TransUNet ViT-R50 43.0 56.1 53.7 78.0 9.3 44.9 56.9 48.9 803.4 13.4
Segmenter ViT-Tiny 38.0 50.7 48.7 77.4 13.3 43.5 58.2 47.1 26.8 14.7
SwinUperNet Swin-Tiny 43.3 54.3 54.3 78.7 14.9 45.3 59.6 50.0 349.1 19.5
DC-Swin Swin-Tiny 41.3 54.5 56.2 78.1 14.5 47.2 62.4 50.6 183.8 23.6
UNetFormer ResNet18 44.7 58.8 54.9 79.6 20.1 46.0 62.5 52.4 46.9 115.3
GIB-RSS - 45.8 59.6 56.4 80.4 21.2 48.2 63.7 54.1 34.2 122.1

a model parameter volume of 34.2 M and an inference speed of 122.1
FPS, which is far superior to other comparison algorithms. Like other
comparison algorithms, due to the use of large-scale pre-training models,
this results in a relatively large number of model parameters and slow
inference speed.

The performance improvement may be attributed to our method’s
ability to flexibly model irregular objects, and the introduction of the
multi-head attention effectively improves the model’s capture of key po-
sition information in the image. At the same time, we also introduced the
information bottleneck theory to perform graph comparison learning.
Unlike the previous GCL method, GIB obtains optimal graph structure
representation by minimizing the mutual information between nodes.
The intuition behind this is that a good augmented multi-view should

be structurally heterogeneous but semantically similar. However, the ex-
isting methods are all based on CNN or Transformer architecture, and
their ability to extract global positional information of irregular objects
is worse than GNN.

6. Sensitivity analysis of a

Fig. 4 illustrates the effect of varying a« on the segmentation per-
formance across UAVid, Vaihingen, Potsdam, and LoveDA. The results
show that the model performance generally improves as a increases from
0.1, reaching the highest accuracy within the range of 0.5-0.8, and then
slightly decreases when a becomes too large. For UAVid and Potsdam,
the mIoU peaks around a = 0.7, achieving approximately 72 % and 90 %
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Fig. 4. Sensitivity analysis of the hyperparameter « on four benchmark datasets
(UAVid, Vaihingen, Potsdam, and LoveDA).

respectively, while Vaihingen attains its best performance near a = 0.5
with an mIoU close to 87 %. LoveDA, despite having lower absolute val-
ues, also benefits from stronger bottleneck regularization and shows its
highest score at « = 0.8. These observations indicate that although «
is critical in balancing segmentation loss and bottleneck regularization,
the model remains stable in a moderate range, confirming that setting «
between 0.5 and 0.8 is a robust choice across different datasets.

7. Complexity and inference speed analysis

To further evaluate the practicality and efficiency of the proposed
GIB-RSS model, we compare its computational complexity and infer-
ence speed with several representative baseline methods on the LoveDA
test set. As shown in Table 6, the comparison includes the number of
model parameters (denoted as “Complexity (M)”) and inference speed
measured in frames per second (FPS). All measurements are conducted
using 1024 x 1024 input resolution on a single NVIDIA GTX 3090 GPU.
Our GIB-RSS achieves a competitive trade-off between performance
and efficiency. Specifically, it requires 87.9 million parameters and
achieves 61.7 FPS, which is significantly faster than most Transformer-
based models such as TransUNet (13.4 FPS), Segmenter (14.7 FPS),
and DC-Swin (23.6 FPS), while maintaining a much smaller parame-
ter size compared to models like TransUNet (803.4 M) or SwinUperNet
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Table 6

Quantitative comparison on the LoveDA test set against other networks.
Complexity and inference speed are evaluated using 1024 x 1024 inputs with a
single NVIDIA GTX 3090 GPU.

Method Backbone Complexity (M) Speed (FPS)
PSPNet ResNet50 105.7 52.2
DeepLabV3+ ResNet50 95.8 53.7
SemanticFPN ResNet50 103.3 52.7
FarSeg ResNet50 — 47.8
FactSeg ResNet50 — 46.7
BANet ResT-Lite 52.6 11.5
TransUNet ViT-R50 803.4 13.4
Segmenter ViT-Tiny 26.8 14.7
SwinUperNet Swin-Tiny 349.1 19.5
DC-Swin Swin-Tiny 183.8 23.6
UNetFormer ResNet18 46.9 115.3
GIB-RSS — 87.9 61.7

(349.1 M). Although slightly larger than UNetFormer (46.9 M), GIB-RSS
outperforms it in segmentation accuracy, as shown in Table 5. This re-
sult demonstrates that GIB-RSS not only provides strong segmentation
accuracy but also maintains practical runtime efficiency and model size,
making it suitable for deployment in real-world remote sensing systems.

8. Visualization of segmentation results

As shown in Figs. 5-7, we also intuitively display the segmentation
results of the model. The visualized segmentation results demonstrate
the effectiveness of our designed GIB-RSS in dealing with challenging
irregular objects.

Specifically, in Fig. 5, we see that GIB-RSS can more accurately seg-
ment trees and buildings than other SOTA models, and the cases of
incorrect segmentation are relatively small. Other models easily misclas-
sify lowveg. categories as background categories, and they fail to learn
better for building category boundaries. In particular, in the first row of
images, existing methods cannot segment the tree category well, either
identifying it as background or identifying it as other categories. In the
second row of pictures, existing comparison methods cannot segment
some relatively small categories well, while GIB-RSS can segment small
irregular objects better. In the third row of images, GIB-RSS can better
segment the boundary areas of two different categories.

As shown in Fig. 6, our proposed model is more clearly distinguishes
the difference between trees and lowveg. The experimental results show
that GIB-RSS more effectively learn the boundary information between
different categories. The class boundary learning ability of other mod-
els is significantly worse than GIB-RSS. Specifically, in the first row of

Al A

(a) Rawimage (b) GT  (c) DANet (d) SwiftNet (e) Segmener (f) BANet (g) GIB-RSS
Imp.suf. Building Lowveg. Tree Car Background

Fig. 5. Visualization of the segmentation results of different models on the Postdam dataset.
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(a) Raw image (b) GT (c) DANet (d) SwiftNet  (e) Segmener (f) BANet (g) GIB-RSS
Imp.suf. Building Lowveg. Car

Fig. 6. Visualization of the segmentation results of different models on the Vaihingen dataset.
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Fig. 7. Visualization of the segmentation results of different models on the LoveDA dataset.

images, our method can better identify the background area, while other
comparison methods easily misclassify the background area as a build-
ing category. In the second row of pictures, GIB-RSS can segment the
tree category relatively completely, while other methods easily identify
the tree category as a background category or other categories. In the
third row of images, GIB-RSS can sensitively detect the boundary areas of
categories, while other methods cannot correctly segment the boundary
areas of categories.

As shown in Fig. 7, in the first row of images, existing methods can-
not correctly classify the tree category, but incorrectly classify it as the
agriculture category. Unlike contrastive methods, GIB-RSS can well dis-
tinguish the difference between two categories and achieve better class
boundary segmentation. In the second row of pictures, since the seg-
mented objects are relatively small, existing methods cannot perform
fine-grained segmentation on them. GIB-RSS can segment small objects
at fine granularity while also distinguishing differences between tree and
background categories. In the third row of images, none of the existing
comparison methods can segment the water category, while GIB-RSS can
segment them accurately. Experimental results demonstrate the superior
segmentation performance of the GIB method for irregular objects.

9. Ablation study

We conduct ablation studies of our model GIB-RSS on four segmen-
tation datasets to illustrate the effectiveness of our used modules.

10

Table 7
Experimental results of different types of graph convolutional neural networks
on datasets. We choose the mIoU value as our evaluation metric.

GraphConv UAVid Vaihingen Potsdam LoveDA
EdgeConv 69.5 84.4 86.9 53.6
GIN 68.7 83.6 86.7 53.1
GraphSAGE 68.6 83.4 86.2 52.7
GAT 70.6 85.3 87.8 54.1

9.1. Type of graph convolution

In experiments we explore the performance of three different
graph convolution variants on segmentation, including EdgeConv, GIN,
GraphSAGE, and GAT. As shown in Table 7, GAT achieves the highest
accuracy with mIoU values of 79.6 %, 85.3 %, 87.8 % and 54.1 % on
the four datasets. The effect of EdgeConv is second, with mIoU values
of 69.5 %, 84.4 %, 86.9 % and 53.6 % on the four datasets. The effect
of GraSAGE is worst, with mIoU values of 68.6 %, 83.4 %, 86.2 % and
52.7 % on the four datasets. The performance improvement may be at-
tributed to GAT’s ability to capture key region information in the image.

9.2. The effects of modules in GIB-RSS

To illustrate that the modules (i.e., node-masking and edge-masking)
proposed in this paper can better improve the performance of GNN
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Table 8

The effectiveness of the proposed three core modules (i.e., GNN, Node-Masking
(NM), Edge-Masking (EM)) is verified by ablation experiments on the dataset.
We choose the mIoU value as our evaluation metric.

GNN NM EM UAVid Vaihingen Potsdam LoveDA

v X X 67.5 81.8 86.2 53.0

v v X 68.0 81.7 85.4 53.6

v X v 68.2 82.3 86.5 53.8

v v v 70.6 85.3 87.8 54.1
Table 9

The influence of different number of neighbor nodes K on the experimental
results. We choose the mIoU value as our evaluation metric.

K UAVid Vaihingen Potsdam LoveDA
3 66.7 82.5 84.4 52.1
6 67.6 82.9 85.8 52.7
9 67.8 83.3 85.9 52.9
12 68.9 84.2 86.6 53.6
15 70.6 85.3 87.8 54.1
18 69.3 83.9 87.0 53.6

in the field of image segmentation, we verify the effect of these mod-
ules through ablation studies. We use node mask view and edge mask
view with information bottleneck criterion to improve the generaliza-
tion ability of the model. From Table 8 we can see that the performance
of image segmentation using graph convolution alone is not compet-
itive. The accuracy of segmentation can be improved by introducing
node-masking and edge-masking. Specifically, the model performs best
when using both node mask and edge mask views, with mIoU values of
70.6 %, 85.3 %, 87.8 % and 54.1 % respectively. When only using the
node mask view, the effect of the model is second, with mIoU values of
68.2 %, 82.3 %, 86.5 % and 53.8 % respectively. The model has the worst
performance when the node mask and edge mask views are not used,
with mloU values of 67.5 %, 81.8 %, 86.2 % and 53.0 % respectively.
In summary, applying GIB directly on GCN yields limited improve-
ments, confirming that original GIB may over-suppress rare features
in imbalanced graphs. By contrast, our adaptive masking instantiation
consistently boosts performance, demonstrating the necessity of extend-
ing GIB to view-specific regulation. These results empirically reveal
limitations of the original GIB and verify our theoretical extension.

9.3. The number of neighbors

The number of neighbor nodes K is a hyperparameter controlling
information aggregation. Too few neighbor nodes will lead to low fre-
quency of information exchange, and the global position information
cannot be fully extracted, while too many neighbors will lead to over-
smoothing of the model. Based on the above analysis, we adjusted the
range of K from 3 to 18, and the results are shown in Table 9. When
the number of neighbor nodes K is 15, the segmentation effect is better.
When the number of nodes K is less than 15, the effect of the model
increases as the number of K increases, and when X is greater than 15,
the training effect of the model begins to show a downward trend. The
above phenomenon is consistent with our analysis.

10. Potential applications in low-shot and zero-shot settings

Although the proposed GIB-RSS framework is primarily designed
for fully supervised remote sensing segmentation tasks, its architectural
characteristics naturally lend themselves to extension in data-scarce en-
vironments such as low-shot or zero-shot learning. We briefly outline the
potential directions for applying GIB-RSS in these challenging settings.
(1) Self-Supervised Pretraining for Low-Data Segmentation. Inspired by
recent work such as Unsupervised Pre-training with Language-Vision
Prompts for Low-Data Instance Segmentation [50], GIB-RSS can be

11
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adapted as a self-supervised pretraining module. Specifically, our graph
contrastive learning mechanism, coupled with the information bottle-
neck, can learn structure-aware and task-relevant representations from
unlabeled remote sensing data. These pretrained representations can
then be fine-tuned on downstream segmentation tasks with limited an-
notations, offering a promising route to enhance label efficiency. (2)
Generalization to Unseen Categories via Feature Synthesis. The robust
semantic feature modeling capabilities of GIB-RSS also make it po-
tentially applicable to zero-shot segmentation or detection tasks. For
example, the memory-based region synthesis strategy employed in M-
RRFS [51]: A Memory-based Robust Region Feature Synthesizer for
Zero-shot Object Detection can be integrated with our graph-based
node representation to transfer knowledge across categories. By aligning
graph embeddings with class-level semantic prototypes or external lan-
guage features, the GIB-RSS framework could enable segmenting unseen
object categories in remote sensing images. (3) Structural Robustness
under Low-Resource Conditions. The adaptive masking mechanism in
our method selectively retains the most informative nodes and edges
during contrastive training. This selective learning process may inher-
ently boost robustness under low-shot settings, where overfitting to
limited data is a risk. Moreover, the information bottleneck objective
discourages memorization of noise or irrelevant features, which further
enhances generalization.

11. Conclusions

In this paper, we regard images as graph data and introduce GNN to
perform remote sensing image segmentation tasks, which can flexibly
model irregular objects. To extract the global contextual location infor-
mation in the image, we introduce a multi-head attention mechanism
for global information extraction. Furthermore, we introduce a feed-
forward network for each node to perform feature transformation on
node features to encourage information diversity. In addition, in order
to accelerate the convergence speed of GNN, we introduce the informa-
tion bottleneck theory for graph comparison learning. We argue that a
good augmented view should be structurally heterogeneous but seman-
tically similar. Experimental results prove the superiority of our model
GIB-RSS.
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