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Abstract—Federated learning (FL) is a distributed machine
learning approach that protects user data privacy by training mod-
els locally on clients and aggregating them on a parameter server.
While effective at preserving privacy, FL systems face limitations
such as single points of failure, lack of incentives, and inadequate
security. To address these challenges, blockchain technology is in-
tegrated into FL systems to provide stronger security, fairness, and
scalability. However, blockchain-empowered FL (BC-FL) systems
introduce additional demands on network, computing, and storage
resources. This survey provides a comprehensive review of recent
research on BC-FL systems, analyzing the benefits and challenges
associated with blockchain integration. We explore why blockchain
is applicable to FL, how it can be implemented, and the challenges
and existing solutions for its integration. Additionally, we offer
insights on future research directions for the BC-FL system.

Index Terms—Blockchain-empowered federated learning (FL),
distributed artificial intelligence, security and privacy.

I. INTRODUCTION

RTIFICIAL Intelligence (AI) technologies drive the
A Fourth Industrial Revolution, with user data being essen-
tial for training diverse Machine Learning (ML) models [1].
Training high-quality ML models often involves a centralized
approach, necessitating internal storage of user data. This raises
privacy concerns [2], [3], [4] and highlights the need for stringent
privacy protections [5]. In recent years, regions such as the
European Union [6], [7], the United States [8], and Singapore [5]
have enacted relevant laws and regulations to govern the use
of personal data, enhancing privacy protection but potentially
hindering the utilization of high-quality data.

Federated Learning (FL) is a privacy-preserving distributed
machine learning paradigm that balances user data protection
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and effective utilization [9], [10], [11]. FL involves training local
models on user devices and aggregating these local models into a
global model on a server without requiring users to upload their
data, addressing the aforementioned privacy concerns. Initially
applied to training Gboard [12], FL has proven successful. Its
potential extends beyond this, as it can also address the issue
of data silos. Data silos refer to the isolated or dispersed nature
of data, making access to this data extremely challenging [13].
One cause of data silos is the reluctance of organizations to
share data due to privacy or competitive concerns. For instance,
due to privacy protection, hospitals may be unwilling to share
patient data [14]. In summary, the judicious use of FL can break
down data barriers, leading to its widespread application in
healthcare [15], [16], finance [17], [18], industry [19], [20] and
SO on.

While privacy protection and data utilization benefits have
popularized FL across industry and academia, they also intro-
duce specific challenges. First, there is a lack of trust among
nodes within the FL system [21], [22]. Nodes may worry
that their training contributions will be intentionally tampered
with or miscalculated, damaging their reputation and deserved
rewards. Second, FL systems are vulnerable to attacks from
malicious nodes [23], [24]. Malicious users may intentionally
provide incorrect information to prevent model convergence
and disrupt model training, while malicious servers can recover
users’ training data from the uploaded models. Third, FL is
prone to single point of failure issues [25]. In traditional FL
architectures, the central server is responsible for aggregating
and updating global model parameters. If the central server
is attacked or fails, the entire system’s operation is severely
affected, leading to interruptions in the training process, data
loss, and irrecoverable model states.

Blockchain is essentially a distributed ledger, and its suc-
cessful application in cryptocurrencies demonstrates its poten-
tial to build trust, security, and transparency [26], [27], [28].
Consequently, numerous studies have integrated blockchain
with FL systems to enhance functionality, creating blockchain-
empowered FL (BC-FL) systems. Analyzing existing BC-FL
literature, we find that blockchain’s enhancement of different
aspects of FL originates from its distinct properties. First,
blockchain’s transparency and immutability can alleviate the
lack of trust among nodes within the FL system. By recording
data requiring consensus in the FL system on the blockchain,
these data cannot be tampered with by malicious nodes,
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enhancing trust relationships. Second, through cross-validation
of blockchain nodes and other mechanisms, the resistance of the
FL system to malicious nodes is improved. Finally, blockchain
can replace the centralized server to avoid single point of fail-
ure issues. By designing a reasonable consensus mechanism,
suitable clients can be selected to undertake model aggrega-
tion tasks in each communication round. With the advent of
blockchain 2.0, users can develop smart contracts running on
the blockchain, endowing BC-FL with greater scalability for
automatically running various algorithms [29].

The introduction of blockchain has further driven the devel-
opment of FL, but blockchain is not a panacea for FL. Our
research indicates that blockchain integration poses challenges
related to runtime efficiency and storage capacity. First, the
consensus mechanism of blockchain adds communication and
computation overhead to the BC-FL system. Second, due to the
distributed storage nature of blockchain, full nodes need to back
up the entire blockchain data. Additionally, the introduction of
blockchain can also bring additional security issues, such as
Sybil attacks [30].

Currently, several surveys on BC-FL systems have been pub-
lished. Some focus on the integration of BC-FL with other fields,
such as the Internet of Things [31], [32], drones [33], and health-
care [34], [35]. These studies emphasize the specific applications
of BC-FL systems rather than their commonalities. Other sur-
veys investigate BC-FL systems in general. Qu et al. conducted
a detailed study on the performance of decentralization, attack
resistance, and incentive mechanisms in BC-FL systems, and
surveyed the system architecture forms of BC-FL [36]. However,
they did not investigate transparent reputation mechanisms in
BC-FL and thoroughly analyze why blockchain can enhance
FL systems, merely classifying the functions of BC-FL. Zhu
et al. divided BC-FL system models into three categories and
surveyed real-world applications of BC-FL [33]. However, they
lacked a comprehensive investigation of single point of failure,
reputation mechanisms, security, and privacy issues. Addition-
ally, the aforementioned surveys neglected to conduct a detailed
investigation into the negative effects blockchain can bring to
BC-FL systems. Sameera et al. summarized the general archi-
tecture of BC-FL and detailed how BC-FL addresses security
and privacy threats [37]. However, they lacked in-depth research
on BC-FL’s reputation mechanisms, incentive mechanisms, and
system efficiency and storage issues. We believe that the various
enhancements and potential challenges blockchain brings to
FL systems stem from certain properties or functionalities of
blockchain. Meanwhile, some properties of blockchain can play
different roles in FL systems depending on their application. The
contributions of this work are as follows:

e Starting from the characteristics and functionalities of
blockchain, we introduce how blockchain enhances FL sys-
tems in terms of decentralization, reputation mechanisms,
incentive mechanisms, and security.

® We comprehensively investigate the additional challenges
that arise from using blockchain in FL systems, the reasons
behind these challenges, and existing solutions.

e We summarize future research directions for blockchain-
based FL systems based on existing research.
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Fig. 1. Main scope of this survey. We begin by exploring the characteristics

of blockchain and investigate its enhancement of Federated Learning systems.
Next, we discuss the additional challenges introduced by using blockchain in
FL systems and review existing solutions. Finally, we outline future research
directions for Blockchain-empowered Federated Learning systems.

Investigating how blockchain enhances FL systems from the
perspective of blockchain’s characteristics is an unaddressed
area in existing surveys. This survey can complement similar
recent surveys, filling a gap in the research on BC-FL. This
survey.’s main scope is illustrated in Fig. 1. Section II provides
relevant background knowledge on FL, blockchain. Section III
details general BC-FL architecture and how blockchain en-
hances FL systems. Section IV elaborates on the challenges of
using blockchain in FL systems and existing solutions. Sec-
tion V-A we point out future research directions for BC-FL
systems. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Federated Learning

FL is a privacy-preserving distributed machine learning
paradigm proposed by Google [9]. This paradigm involves a
network of multiple clients (users) alongside a central server.
The clients are tasked with developing local models, which are
then consolidated by the server into a unified, global model [38],
[39], [40]. This structure allows participants considerable auton-
omy, enabling them to contribute to the FL framework without
disclosing their data to any FL node. Participation in FL training
remains at the discretion of the clients. Fig. 3 visually represents
the standard FL training methodology. The task initiator selects
an FL server to publish the training task. Subsequently, clients
related to the training task join the FL training, and the server
initializes the global model. In each communication round, the
server selects clients to participate in that round of training and
distributes the global model to these clients. The clients then use
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Fig.3. Standard federated learning (FL) training methodology.

their local datasets to train the global model, resulting in local
models, which they send back to the server. The server aggre-
gates these local models into a new global model according to
certain rules. The FL process stops when the training termination
condition is met; otherwise, training continues.

FL generally has two classification methods, as depicted in
Fig. 2. Based on the sample ID and feature distribution of local
datasets, FL systems can be divided into Horizontal FL (HFL),
Vertical FL (VFL), and Federated Transfer Learning (FTL). In
HFL, clients have different sample IDs, but the features for
each sample ID are the same. In VFL, clients share the same
sample IDs, but the sample features differ, with the features
distributed across different clients. In FTL, both the sample IDs
and features of the clients differ. Generally, current research on
BC-FL is predominantly based on HFL, with only a few studies
on VFL [41], [42] and FTL [43]. Despite the datasets’ different
characteristics, blockchain’s role does not fundamentally differ.

Moreover, based on the different types of user devices in-
volved in training, FL. can be divided into cross-device FL and
cross-silo FL. Cross-device FL involves an extensive array of
mobile and IoT devices, potentially numbering up to 10'°, often
with poor device performance and network conditions [44], [45].
In cross-silo FL systems, the participating clients are typically
professional computing nodes maintained by specialized institu-
tions, and the number of clients is generally fewer than 100 [46],
[47].

Atpresent, a considerable part of the research on FL is focused
on improving performance. However, with the development of
FL, many researchers have found that simply improving the
performance of FL is not enough. FL is a decentralized system,
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and its security and ecological construction are very important
for the promotion of FL [48]. The introduction of blockchain
provides ideas for the security and ecological construction of FL.

B. Blockchain

Blockchain is a distributed ledger system designed to record
data in a decentralized manner that ensures security, trans-
parency, and immutability [49], [50]. It consists of a series
of interconnected blocks arranged in chronological order. Each
block consists of a block header and a block body. The block
header contains metadata, such as the block number, timestamp,
and the hash of the previous block, ensuring immutability and
integrity. The block body stores specific information, such as the
training data for FL.

In a blockchain network, there is no centralized authority
node, and its autonomous operation relies on consensus mecha-
nisms. In essence, a consensus mechanism is a method by which
multiple nodes reach an agreement, ensuring that all nodes have a
consistent recognition of the data in the blockchain. Mainstream
consensus mechanisms can be categorized into proof-based
and committee-based approaches [26]. Proof-based consensus
mechanisms prioritize nodes with certain resources, granting
them a higher likelihood of adding blocks. For example, Proof
of Work (PoW) requires competing nodes to solve a puzzle,
with the winner being able to add the block. This method favors
nodes with high computational resources. PoS selects a leader to
add a new block using a cryptographic random algorithm, with
the probability of selection being proportional to the number of
tokens held by the node. Therefore, nodes with more tokens have
a higher priority [51]. Committee-based consensus mechanisms
use a voting process, where a predefined number of votes are
required to validate a new block. For instance, in Practical
Byzantine Fault Tolerance (PBFT) [52], nodes are divided into
primary and backup nodes. The primary node is responsible
for proposing new blocks and reaching consensus through a
three-phase protocol (pre-prepare, prepare, and commit). In each
phase, more than two-thirds of the nodes must vote in favor
for the process to continue. Raft [53] is a simpler consensus
mechanism that streamlines data synchronization by electing
a leader. The leader is responsible for receiving requests and
replicating operation logs to other nodes in the cluster, with
other nodes maintaining consistency by following the leader’s
log.

Based on node participation constraints, blockchain can be
classified into two main types: permissionless blockchain and
permissioned blockchain. Permissionless blockchains (e.g., Bit-
coin and Ethereum) allow unrestricted participation of nodes.
Permissioned blockchains, on the other hand, are managed by
specific organizations, with node access restricted to autho-
rized participants, thereby ensuring enhanced data privacy and
security—critical for applications in industries such as finance
and government.

The blockchain’s replica is stored on every node, which
provides the system with high transparency. Combined with
an appropriate consensus mechanism and the chain structure,
blockchain effectively prevents data tampering, ensuring data
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security. Furthermore, the combination of transparency and
immutability makes blockchain auditable. These features give
blockchain significant application value in FL.

III. BLOCKCHAIN-EMPOWERED FEDERATED LEARNING

This section introduces how blockchain technology enhances
the FL system. These enhancements can be categorized into
four aspects: decentralization, reputation evaluation mechanism,
incentive evaluation mechanism, and security. Each of these four
aspects will be discussed separately.

A. Decentralization

FL traditionally relies on a central parameter server, where
clients must continuously communicate with a single FL server.
This centralized structure poses significant risks, such as sin-
gle points of failure and potential malicious server behaviour.
Furthermore, node reputation information is solely managed
by the server, which is not ideal for developing an open FL
ecosystem. Blockchain’s decentralization is a core feature that
fundamentally addresses these issues and provides a new archi-
tectural approach to FL systems. Decentralization can enhance
the security, transparency, and reliability of FL systems, with
these benefits manifesting in various facets of blockchain’s
advantages for FL.

Our review of existing literature identifies several factors in-
fluencing the decentralization of BC-FL, including system archi-
tecture, consensus mechanisms, and smart contracts. The system
architecture determines which nodes maintain the blockchain,
while the consensus mechanism dictates which nodes have
the right to manage the system. Smart contracts can automate
various algorithms within the BC-FL system, offering greater
scalability. Table I compiles representative BC-FL systems,
detailing their use of smart contracts, architecture, consensus
mechanisms, and experimental platforms.

Architecture: BC-FL systems can be categorized by their de-
gree of decentralization: complete and partial. In the completely
decentralized BC-FL, all nodes are eligible to participate in the
consensus process of the blockchain. Fig. 4 shows its general
system architecture. This approach demands high computational
and storage capacities from all nodes. Conversely, partially
decentralized BC-FL involves only a subset of nodes running
the blockchain, while others focus solely on FL training. Fig. 4
shows its general system architecture. The selected nodes that
operate the blockchain system are known as super nodes and
typically have stronger computing power and better communi-
cation conditions. This approach sacrifices some transparency
for increased efficiency.

Consensus Mechanism: A considerable portion of the work
adopts common blockchain consensus mechanisms such as PoW
and PBFT. PoW involves blockchain nodes competing to solve a
mathematical problem, with the first solver aggregating models
and training information into a new block. Other nodes then
verify the block’s correctness, and upon majority approval, it
is added to the blockchain. In PBFT, a set of consensus nodes
is chosen within the BC-FL system, from which a leader node
aggregates the model and generates a new block. Other nodes in
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TABLE I
BC-FL SYSTEMS BASED ON BLOCKCHAIN AND FEDERATED LEARNING

Ref. Smart contract Architecture Consensus algorithm Platform
Abdel [54] v Complete Algorand Other

Fang [55] X Partial Algorand Other

Feng [56] v Partial PBFT/Raft Hyperledger Fabric
Guo [57] v Partial PBFT Hyperledger Fabric
Jiang [58] X Complete DPoS Other

Liu [59] X Partial PoW+PoA Other

Lu [60] X Complete DPoS Other
Nguyen [61] X Partial PoR Other
Nguyen [62] X Partial PoW Other

Qi [63] v Partial - Hyperledger Fabric
Qi [64] v Complete Modified PBFT Ethereum

Qu [65] X Complete PoW Other
Rehman [66] v Complete - Ethereum

Wu [67] X Complete PoW Other

Xu [68] X Complete - Other

Xu [69] v Complete - Other
Zhang [70] X Partial PoW Other

Zhao [71] X Partial PBFT Other

Wang [72] X Complete - Other
Huang [72] v Partial Raft, HotStuff FISCO
Ouyang [73] v Partial PoS Ethereum
Yuan [74] v Partial Raft, Modified DAG Hyperledger, DAG
aloqaily [75] X Partial - Other

Mu [76] X Complete - Other
Wabhrstatter [77] X Complete PoS Ethereum
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Fig.4. Two decentralized architectures of the Blockchain-Empowered Feder-
ated Learning system.

the set verify the leader’s block. Some work has specifically
developed consensus mechanisms for BC-FL, such as Proof
of Reputation [61]. These custom consensus mechanisms are
usually designed to enhance FL functionality or mitigate the
disadvantages of blockchain, which will be elaborated on in the
subsequent sections.

Smart Contracts: Smart contracts significantly enhance the
scalability of BC-FL systems. For instance, model aggregation
can be executed via smart contracts, increasing transparency.
Additionally, smart contracts can deploy algorithms for
detecting and handling malicious nodes, thereby improving
system efficiency. They can also manage node reputation
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evaluations and incentive algorithms, further enhancing system
transparency.

Next, we will examine some representative architectures of @ransaction Broadcast

completely decentralized BC-FL systems.

In [69], Xu et al. proposed a BC-FL framework named
Blockchain Empowered Secure and Incentive Federated Learn-
ing (BESIFL). BESIFL enables any node in the network to
initiate FL training requirements. Upon receipt of a require-
ment, BESIFL selects computing nodes with high computation
reputation scores to form a computing pool and assigns them the
task of model training. Meanwhile, BESIFL chooses verification
nodes with high verification reputation scores to form a verifi-
cation pool and assigns them the task of model aggregation and
verification using pre-defined procedures specified by the smart
contract. BESIFL can combat malicious nodes and improve the
performance and security of FL, but the node selection scheme is
relatively complex and will increase time overhead. Li et al. also
proposed a completely decentralized BF-FL system, where each
client acts as both a FL trainer and a blockchain miner [78]. After
training their local models, clients initiate blockchain transaction
requests and broadcast their models by attaching them to the
transaction information. Each client aggregates the global model
locally after receiving local models from all other clients and
starts mining. The winning miner broadcasts a block containing
global model information, which is verified by other clients
and then written into the blockchain. This method effectively
resists threats such as single point failures and malicious attacks,
ensures reliable model updates, and provides theoretical analy-
sis. However, this system assumes that all clients possess equal
computational power, which may not be realistic in practice. In
addition to the two aforementioned decentralized methods, Qu et
al. designed a novel approach that utilizes a rotation mechanism
with randomness to select committee members for participat-
ing in blockchain consensus [79]. This proposed blockchain
consensus mechanism greatly reduces additional consumption
generated by the blockchain consensus process compared to
the PoW mechanism. Committee members are only responsible
for aggregating and validating the global model and do not
participate in training. The global model is generated by com-
mittee members and stored in the blockchain after verification.
While the rotation mechanism ensures the mobility of committee
members, it can ensure some level of system security. However,
this consensus mechanism is only applicable in situations where
the number of malicious nodes is small.

The BC-FL systems described below follow the partial
decentralization architecture. Feng et al. proposed a BC-FL
system for UAVs that maintains the blockchain system only in
entities with high computing and storage capabilities, such as
base stations and roadside nodes [56]. The approach implements
model aggregation operations through smart contracts, replacing
traditional parameter servers, and achieving a balance between
efficiency and transparency. To address the challenge of online
and offline state changes among BC-FL participants, the authors
set the maximum waiting time and the required number of local
models for each learning round. If any of these conditions are
met, the model update contract is triggered, ensuring timely
updates while accommodating BC-FL participant availability.
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However, the authors did not provide solutions such as model
compression based on the weak communication capabilities of
drones. In [59], Liu et al. proposed a framework for training
vehicle intrusion model. The blockchain is maintained by
roadside units and stores and shares the global models for the
BC-FL system. After receiving the global model, the vehicle
uses the data collected by itself to train the model and upload it
to the connected roadside unit nodes. The consensus mechanism
in place combines PoW and PoA, with the roadside node that
has achieved the highest accuracy being written into the block
to encourage the training of high-precision models. PoA can
significantly shorten block generation time and improve system
efficiency. However, the experiment was ideal and did not
consider issues such as signal stability.

Workflow of BC-FL Systems: The overall workflow of the
BC-FL system is illustrated in Fig. 5. Different BC-FL systems
may be adjusted according to specific circumstances. The steps
are explained as follows:

1. Initialization: Each client initializes the environment based
on prior negotiation, including model parameter, and training
parameter. The blockchain can assist clients in negotiation by
storing initialization parameters on the chain and using smart
contracts. 2.Local model training: Each client trains the global
model using their local dataset. 3.Local model upload: Clients
upload training-related data and local models to the blockchain
system. To alleviate storage pressure on the blockchain, clients
may upload only model-related information rather than the entire
model, as detailed in Section IV-C. 4.Transaction broadcast:
Upon receiving the transaction, blockchain nodes broadcast it
within the system for cross-validation. The nodes inspect the
transaction content (e.g., model) based on pre-defined rules.
If no issues are found, the transaction is added to the local
transaction pool. 5.Block generation: Blockchain nodes select
the node with the right to generate blocks for the current round
based on the consensus protocol. This node aggregates the local
models to generate the global model, compiles relevant model
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and training information, and creates a block. 6.Block Broadcast:
The blockchain system broadcasts the newly generated block.
Upon receiving it, validation nodes verify the block according
to specific rules. If the majority of nodes validate the block, it
is added to their locally maintained blockchain, achieving con-
sensus across the network. 7.Global Model Download: Clients
download the latest global model from the blockchain system.
8.End condition judgment: Based on pre-negotiated rules, the
FL process evaluates whether it has reached the end condition.
If not, the process returns to Step 2 to continue training.

B. Reputation Evalutation Mechanism

FL is a collaborative approach to training a shared model
that requires the participation of multiple clients with local data.
However, clients may have varying motivations and behaviors,
such as seeking rewards for their assistance, hoping to obtain a
trained model, or attempting to benefit from the global model
without contributing to the training process. In some cases,
clients may even have malicious intentions, seeking to under-
mine the effectiveness of FL due to conflicts of interest in reality
or other factors. Compared to traditional distributed learning
methods, FL prioritizes user data privacy, which means that the
parameter server has limited access to information about the
local environment of each client. Therefore, it is essential for
the FL task publisher to implement a reputation management
mechanism that can assist in managing, rewarding, or punishing
FL clients based on their contributions and behavior.

Several studies have proposed the use of some reputation
management mechanisms in a centralized way on the parameter
server [57], [80]. While this approach can serve as a foundation
for client management, reward and punishment schemes, its lack
of transparency remains a concern. Data owners who contribute
to the training process may worry about potential inaccuracies
in the parameter server’s reputation calculations, while those
seeking to obtain a trained model may be concerned that the
parameter server could intentionally manipulate reputations to
undermine FL. models. Given the importance of attracting high-
quality data owners to ensure optimal FL model performance,
the transparent reputation management mechanism is particu-
larly well-suited for FL systems. Additionally, a trustworthy pa-
rameter server aims to calculate reputation in a transparent man-
ner to discourage malicious nodes. To address these concerns,
the BC-FL system leverages blockchain technology to ensure
the transparency and credibility of the reputation management
mechanism.

After conducting our analysis, we have identified two crucial
functions that blockchain can perform within the reputation
management mechanism.

1. The blockchain acts as a reliable third-party ledger in the
BC-FL system to document crucial information regarding
each node’s reputation, including but not limited to its
reputation value [57], [81], [82] and various calculation
bases [59], [63], [83].

2. In the BC-FL system, the reputation computation process
can be deployed on the blockchain through a specialized
reputation calculation smart contract [63], [83], [84]. This

2249

Blockchain

Trusted distributed ledger Smart contract

U U

Blockchain-empowered reputation evaluation mechanism

Trusted reputation preservation

U U

Usage of reputation mechanism

Trusted reputation calculation

Node selection Reward / Punish Model aggregation

Fig.6. Reputation management mechanisms based on blockchain. Blockchain
is commonly utilized as a reliable distributed ledger or transparent smart contract
platform for reputation management mechanisms. This allows the system to store
clients’ reputation value and the reputation calculation basis on the blockchain, or
use smart contracts to compute the reputation in a transparent way. The primary
function of reputation management mechanisms is to facilitate node selection,
model aggregation, and incentivization.

approach serves to ensure both transparency and automa-
tion throughout the entire computation process, thereby
guaranteeing dependable and consistent outcomes.

The reputation management mechanism based on blockchain
in BC-FL is illustrated in Fig. 6.

Various papers adopt distinct approaches in calculating the
reputation of BC-FL clients. Some calculate reputation values
solely on the basis of local model test accuracy, while others take
into account evaluations from other clients or factor in the inter-
action effect between clients and the blockchain system. More-
over, researchers have leveraged clients’ reputations in various
ways. For instance, some deploy reputation as a criterion for se-
lecting participating clients, whereas others utilize it to ascertain
the weight assigned to global model aggregation. Additionally,
there are those who offer incentives and penalties to clients based
on their respective reputations. We present a comprehensive
analysis of BC-FL systems that utilize blockchain technology
to establish transparent reputation management mechanisms.
Table II summarizes the key attributes of these systems.

Kang et al. proposed a reputation value calculation method
based on multi-weight subjective logic, allowing each evaluator
to form a unique reputation assessment [81], [83]. Specifically,
an evaluator ¢ directly evaluates a target a, resulting in a direct
reputation value V; ,. At the same time, ¢ also considers the
evaluations of @ made by other evaluators j, denoted as V; ,
(indirect reputation). The similarity .S; ; , between V; , and V; ,
is calculated using a modified cosine similarity measure. This
similarity S; ; o is then used as a weight to combine the direct
and indirect reputation values into an integrated reputation value
according to a specific formula. This method incorporates eval-
uations from multiple entities within the system, theoretically
providing accurate and comprehensive reputation assessments.
However, the introduction of multiple factors makes the cal-
culation process more complex, potentially increasing system
latency and resource consumption. Additionally, the method
involves numerous hyperparameters, which may affect its
feasibility and efficiency in large-scale deployments.
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TABLE II
BLOCKCHAIN-BASED REPUTATION MECHANISM IN BC-FL SYSTEMS

Ref. Reputation Source

Blockchain Usage Reputation Usage

Global Model Other

Workers

Blockchain

Model
Aggregation

Node
Selection

Reward or
Punishment

Usage 1 Usage 2

Chen [85]
Gao [86]
Guo [57]
Haddaji[82]
He [80]
Kang [83]
Liu [59]

Qi [63]

Qiu [84]
Rahman [87]
Xu [68]
Zhao [88]
Wang [72]
Lin [89]

Fu [90]
Wabhrstatter [77]

RN N N N N N N NENENENEN

N
AN N N NN

AN N N N N NN NEN
ANENENE

In [63], Qi et al. proposed a novel reputation evaluation
mechanism for multi-model aggregators in FL. Each model
aggregator has its test dataset, and the reputation of each partic-
ipating client is calculated separately by each aggregator. The
winning aggregator is selected based on a set of rules, and the
winning aggregator updates the client’s reputation value to the
blockchain. The model aggregators calculate the client’s repu-
tation in two steps. In the first step, each model aggregator uses
a fair-value game [91] to test the quality of the local model with
its test dataset. When the result of a formula containing model
test accuracy reaches a certain threshold, the corresponding
reputation update is activated. In the second step, the model
aggregator synthesizes the results given by other aggregators on
the network to obtain the indirect reputation value of the node.
Finally, the reputation evaluation value of the modified model
aggregator for the node in this round is obtained from the results
of the first and second steps. This approach ensures fairness in
reputation evaluation across different aggregators and improves
the accuracy of the final reputation value. Additionally, authors
introduced a grouping mechanism to handle the complexity of
large participant numbers, which improves upon Kang et al.’s
method [81]. However, the grouping basis is limited, potentially
leading to issues like data homogeneity within groups and
reduced learning effectiveness.

In [86], Gao et al. designed a time-decaying subjective logic
model (SLM) algorithm to measure the client’s reputation and
a lightweight approach based on gradient similarity to mea-
sure client contribution. The final task publisher determines
the client’s reward share by multiplying the contribution and
reputation metrics. They used reputation metrics to measure
clientreliability and select clients with high reputations to ensure
high system stability, which enables BC-FL to work stably in
unreliable environments. However, this method does not fully
consider the impact of data heterogeneity and may harm honest
clients.

C. Incentive Evaluation Mechanism

In FL systems, clients not only need to contribute local data
but also consume significant amounts of computing resources
and network bandwidth [92], [93]. Without tangible incentives,
it may be difficult to attract enough clients to participate in
the FL systems. Therefore, introducing an incentive mechanism
in FL systems is critical. The introduction of incentives can
help incentivize clients to join the FL systems and contribute
their valuable data. Adequate participation is crucial for FL to
train accurate models with good generalization. Additionally,
incorporating incentives can increase clients’ engagement and
motivation, leading to contributing better data and participation
in more training epochs [94]. Furthermore, the incentive mech-
anism can help achieve fairness in FL systems by rewarding
clients based on their data quality and computing power.

A transparent and open incentive mechanism is crucial for at-
tracting clients to participate in federated learning. As it involves
vital interests, each client hopes to supervise the calculation of
rewards. The BC-FL system utilizes the blockchain to provide
a transparent and open incentive mechanism. The blockchain is
a decentralized ledger that is maintained on each participating
node, requiring the joint efforts of blockchain nodes instead
of a centralized organization. This architecture ensures trans-
parency and openness and facilitates tracking and auditing of
data necessary for calculating incentives, thereby establishing
clients’ trust in the incentive results. Furthermore, the incentive
algorithm can be written as a smart contract and deployed on the
blockchain for automatic incentive calculation and distribution,
further strengthening clients’ trust in the incentive results. The
transparent and open incentive mechanism provided by the
blockchain can help to attract more clients to participate in
the FL process, contributing high-quality data and computing
resources. Consequently, it promotes the accuracy and general-
ization of the trained model and enhances the efficiency of the
BC-FL system.
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TABLE III
STATISTICS OF BLOCKCHAIN BASED INCENTIVE MECHANISM IN BC-FL
SYSTEMS

Ref. Incentives Incentive Basis Smart Contract

[54] Manufacturer’s Reputation v
discount

[95] Token Model accuracy v

[86] Token Model accuracy, reputation v

[96] Token Model accuracy

[59] Reputation Model accuracy

[11] Ethereum Model accuracy v

[97]  Financial Model accuracy v
incentive

[98] Not mentioned Data size

[99] Not mentioned
[66] Token

[100] Reputation,
revenue

Computing power, local data
Reputation v

Reputation, shaply values, and model v
aggregration

[101] Token Model accuracy, block mining

[68] Token Model accuracy, training time v
[102] Not mentioned Model accuracy, consensus Participation

[103] Token Training speed, computing power, and v

feature extractors sharing

[104] Ethereum Model accuracy, data size v
[72] Token Model accuracy, block mining

[105] Token Model accuracy, node behavior v
[77] Ethereum Model accuracy, reputation v

We focus on BC-FL systems that provide transparent and open
incentive mechanisms based on the blockchain. We believe that
understanding this incentive mechanism requires consideration
of three aspects: incentive basis, incentives, and incentive algo-
rithms. The settings of these aspects should be tailored to the
specific FL tasks. Table III outlines several prominent BC-FL
systems developed in recent years.

The incentive basis refers to the criteria that the system uses
to reward clients, which may include factors such as node
reputation, data quality and quantity, and learning behavior. For
instance, Qu et al. rewarded the clients based on the amount
of data they contributed [98], but this approach may not accu-
rately reflect the overall contribution of a client to the global
model. Factors such as data quality and participation frequency
can also significantly impact the effectiveness of the training
process. In contrast, Li et al. focused solely on model accuracy
as the basis for awarding nodes, as it is verifiable and reflects
their contribution [96]. This method does not fully consider the
enthusiasm of the participants. Meanwhile, Gao et al. argued
that rewards should be based on both model accuracy and
node reputation, as this incentivizes continued contributions
to the global model [86]. In addition, to compensate the data
owner, Zhang et al. considered the energy consumption of the
data owner during training and incorporated this factor into the
calculation of rewards [103].

Incentives refer to the rewards that clients receive in a system,
and they can take various forms such as economic items, tokens,
and reputation. Economic items provide monetary benefits to
data owners, such as cryptocurrencies like Bitcoin or Ethereum.
Tokens, on the other hand, are generated by the BC-FL system
and can be used to purchase services within the system, including
trained models or tasks for model training. The circulation of
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tokens promotes a self-sustaining ecosystem within the sys-
tem that encourages participants to contribute and collaborate.
In [86], [95], [101], researchers have utilized tokens within their
proposed BC-FL systems as rewards Liu et al. used Ethereum
as a reward for training, providing real-world economic incen-
tives [11]. In addition to cryptocurrency rewards, Abdel et al.
proposed a BC-FL system for the Industrial Internet of Things
that offers clients maintenance services or discounts on products
from manufacturers as incentives [54].

The incentive algorithm determines the specific implementa-
tion method of the incentive mechanism. Generally, the algo-
rithm involves quantifying each incentive basis and inputting it
as a variable into the reward function, which yields the corre-
sponding reward value. For instance, Xu et al. proposed a reward
formula balancing model accuracy and training time [68]. The
reward for each client is calculated based on their accuracy and
training time during training. A tunable parameter, «, allows
prioritization between accuracy and time depending on the task
requirements. This flexibility enables adaptation to tasks with
varying sensitivity to these factors.

D. Security Enhancement

The BC-FL system achieves the establishment of a trustwor-
thy relationship in the system through blockchain technology. As
adistributed database, blockchain aligns with the distributed na-
ture of FL. With certain consensus mechanisms, the blockchain
can still maintain the consistency and correctness of the system
even in the presence of malicious clients. Therefore, the robust-
ness of blockchain against malicious nodes makes it well-suited
for an environment where malicious nodes could exist in the FL
system. Furthermore, due to the robustness of the blockchain,
the BC-FL system allows for the storage of vulnerable data in
the blockchain, enhancing the security of the entire system. The
security issues in the BC-FL system is illustrated in Fig. 7.

To explicate the specific security properties of blockchain
necessary for implementation in a BC-FL system, we conducted
an extensive study of representative BC-FL systems from recent
years. The results of this research are presented in Table I'V.

Transparency: Transparency is one of the key features of
the blockchain. All the information stored on the blockchain
is accessible to full nodes, while light nodes can query certain
information by sending requests to the full nodes. In the BC-FL
system, transparency refers to the transparent operation of algo-
rithms and the disclosure of data. This includes but is not limited
to, the parameter aggregation operation, the reputation of each
node, and the reward operation of the system. The transparent
nature of blockchain is derived from the distributed maintenance
of the blockchain across all nodes in the network, with each node
maintaining a local copy of the blockchain ledger.

Auditability: Auditability is a significant feature of blockchain
systems, enabling the tracing and analysis of data using spe-
cialized algorithms. In the BC-FL system, auditability becomes
particularly valuable when specific circumstances arise, such as
ineffective model training or the need to review client operations.
The recorded data on the blockchain - including local gradients
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TABLE IV
STATISTICS ON THE SECURITY PURPOSE OF INTRODUCING BLOCKCHAIN IN BC-FL SYSTEMS

Ref. Transparency Auditability Anti-malicious nodes Traceability Immutability ~ Anti-single point
of failure
[106] - v v - v -
[107] - - v - - -
[108] - - ' - v -
[109] - ' - - v -
[96] - ' v v - v
[110] - - v - - -
[111] - - - - - v
[112] v - v v - v
[113] - ' - - v -
[114] - ' ' - v -
[68] v - - - v v
[103] v - ; ; v )
[70] - - - v v v
[115] - - - - v -
[73] - v v - v v
[89] - - ' - - v
[75] - - ' - - -
[76] - - v - - v
[90] v - N N v v
[105] - v v - v v
[116] - - v v v -

Blockchain-based security mechanism

Consensus
algorithm

Network
protocol

Distributed
t
storage Smart contract

Distributed

computing

[112] [54] [63]

Cryptography Merkle tree

Automatically and
transparently
execute algorithms

Features Trust entity

[63] [81] [88] [59]

Immutability
[106][108]
[109][114]

Auditability
[96] [110]

[114] [106]

Transparency
[103][68]
[112][165]
Traceability
[70][112]
[96][165]

Integrate  Information
security

Introd
ntroduce technology

trusted
entity

Integrate

Introduce
features A4
Enhance the robustness Establish trust between Automatic execution of
and transparency nodes security algorithms
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Fig.7. Security provided by blockchain for the BC-FL system. By employing
appropriate techniques, blockchain can impart its security features (e.g. im-
mutability and traceability) to the FL system. Moreover, in a partially trusted FL
environment, blockchain can act as a reliable entity to foster trust relationships.
Furthermore, deploying security-enhancing algorithms on the blockchain via
smart contracts can further enhance the security of the BC-FL system.

- can be extracted for detailed analysis. By analyzing previously
recorded information on the blockchain, such as local gradients,
nodes can be penalized for producing undesirable outcomes.
Anti-malicious nodes: In blockchain systems, malicious
nodes can take on various forms, including those that propagate
false blocks or launch attacks against the system. Byzantine
robust consensus algorithms can be used to mitigate these types
of malicious behavior. In the BC-FL system, malicious nodes are
those that can undermine the effectiveness of the system, such as
through poisoning attacks or privacy violations. To address these
issues, specific consensus algorithms can be designed to thwart

malicious activity, or security techniques can be incorporated
into the system via smart contracts. Anti-malicious nodes and
auditability both play a role in dealing with malicious nodes, but
the former aims to prevent the impact of malicious nodes in real
time, while the latter focuses on identifying the source of the
attack after the fact.

Traceability: The blockchain system inherently preserves all
state changes since its genesis block. When tracing back to a
previous state, the system can be readily restored to a specific
point in history. In the BC-FL system, traceability refers to the
ability to restore a previously trained model or parameters saved
by the current work in case of severe damage or loss due to
central server failure.

Immutability: The immutable nature of the blockchain can
be attributed to the sound design that underlies its consensus
algorithm. Each full node in a blockchain network maintains
a local copy of the ledger, which ensures that malicious nodes
are unable to dictate terms to other nodes unless they comply
with the consensus algorithm. Any attempts to tamper with the
local copy by modifying incorrect blockchains will result in the
creation of new blocks that cannot be recognized by other honest
nodes. Therefore, as long as the majority of computing power
is held by honest nodes, the blockchain remains immutable. In
the BC-FL system, critical information such as client reputation
and model hash values can be securely stored on the blockchain
to ensure the accuracy of this data.

Anti-single point of failure: The term “’single point of failure”
refers to a scenario where a sole parameter server becomes the
bottleneck for FL security, rendering the entire system inoper-
able if it fails due to an attack or power outage, among other
reasons. To tackle this problem, the BC-FL system replaces the
role of the parameter server with blockchain technology. As
discussed in Section III, the issue of single point of a failure is
elaborated upon.
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Transparency, Auditability, Traceability, and Immutability are
inherently interconnected, they enhance the security and robust-
ness of the BC-FL system. Among these attributes, immutability
and transparency can be considered fundamental for the follow-
ing reasons. Immutability is foundational as it underpins trust in
the blockchain system. Without immutability, the reliability of
auditability and traceability would be compromised, as historical
data could be altered, leading to inaccurate analyses or the in-
ability to restore accurate prior states. Transparency is essential
for enabling auditability and traceability. Without access to the
recorded data (provided by transparency), audit processes cannot
inspect historical operations, and the system cannot reconstruct
past states.

To provide a comprehensive understanding of the utilization
of blockchain technology in enhancing the security of the BC-FL
system, we will discuss prominent literature in this field.

In [106], Sana et al. regarded the blockchain as an im-
mutable, decentralized, and reliable entity, which they incorpo-
rate into their proposed BC-FL framework called blockchain-
based privacy-preserving FL (BC-based PPFL). The utilization
of blockchain provides auditability, thereby enhancing the re-
silience of BC-based PPFL against malicious clients. Specif-
ically, the assumption of semi-honest clients in the universal
FL system is further elevated to the assumption of malicious
clients. However, the authors’ experiment is relatively simple
and fails to fully illustrate the tolerance of malicious nodes. Qi
et al. introduced the adoption of smart contracts to handle FL
tasks [63]. These smart contracts encompass various functions
such as task initiation, member selection, FL. execution, rep-
utation evaluation, reward distribution, and query processing.
This approach can greatly improve the credibility and reliability
of FL, but the extensive use of smart contracts consumes a
lot of computing resources, so it may be limited in practical
applications. In [88], Zhao et al. combined Multi-Krum with
reputation mechanisms as well as aggregation mechanisms to
rule out malicious gradients and penalize malicious clients.
However, the MNIST dataset used in the experiment is small,
and its effect needs to be verified on more datasets. In [54], Qi
et al. proposed a smart contract called Hunter Contract (HC)
to prevent malicious clients. HC acts as a hunter by randomly
selecting a client and verifying whether the gradient uploaded by
that client causes a decline in the global model accuracy. If the
reduction surpasses a predefined threshold, the client s classified
as malicious. This method requires careful consideration of the
threshold, otherwise it may be misjudged.

In ablockchain system, individual nodes follow the consensus
mechanism to ensure the consistency, validity, and accuracy of
the data. In a BC-FL system, the data or training results of the
FL process are stored on the blockchain, and the blockchain’s
consensus mechanism can be used to verify the content of the
FL. Consequently, some researchers have improved the security
of FL by adjusting the blockchain’s consensus mechanism.

In [96], Li et al. proposed a Byzantine-resistant consensus
mechanism named Proof of Accuracy, which serves to identify
models of poor quality. This consensus algorithm takes into
consideration not only the exclusion of local models that are
deemed too poor for aggregation into the global model but also
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the potential for a local model with a high loss value to aid
the global model in escaping local optimal solutions. To fulfil
this requirement, the consensus algorithm employs two critical
thresholds: the accuracy oscillation threshold (AOT) and the
accuracy deviation threshold (ADT). The AOT determines the
maximum acceptable accuracy reduction permitted by the ac-
cepted model, while the ADT determines the maximum absolute
difference in accuracy among different client models. These two
thresholds are subject to dynamic adjustments as the algorithm
progresses. The AOT and ADT methods are highly dependent on
the choice of test sets, which need to be extensive and representa-
tive when constructing test datasets. In [84], Qiu et al. increased
the security of the BC-FL system through the introduction of
a novel consensus protocol called Proof of Learning (PoL). In
contrast to PoW, PoL requires nodes to compete for the privilege
of accounting rights through calculation by training a FL. model,
where the node with the smallest loss value adds a new block
as the winner. Other clients aggregate the winner’s local model
based on the reputation value against the winning node after
verifying the authenticity of the newly added block. Ouyang et
al. utilized smart contracts to authenticate participating nodes
and prevent malicious nodes from participating [73]. However,
the authors mainly validate the effectiveness of the method based
on theoretical models and simulation experiments, without
validating it on multiple datasets.

Furthermore, the security provided by blockchain plays a
critical role in constructing a robust ecosystem for FL, wherein
transparency enables participants to conduct real-time supervi-
sion, thereby establishing trust and attracting diverse stakehold-
ers to engage in the ecosystem. Smart contracts autonomously
execute incentive algorithms and reputation management mech-
anisms, ensuring fairness and further enhancing client trust
and participation enthusiasm. In [117], blockchain precisely
records the contributions of each model provider, equitably
distributing rewards based on predictive accuracy while simulta-
neously improving system security. This approach incentivizes
entities with high-quality model resources to actively participate,
consequently expanding the diversity of the model repository.

As mentioned earlier, certain security technologies from the
field of information security have been considered for use in
the BC-FL system to enhance their security. While not directly
related to the security of the BC-FL system, smart contracts
can serve as a platform for running certain algorithms. Hence,
we will provide a brief overview of this topic. To safeguard
client privacy, the utilization of homomorphic encryption and
differential privacy algorithms [5] is common, and researchers
have developed advanced algorithms building upon these fun-
damental techniques. We have organized this material in
Section I'V-B.

IV. CHALLENGES AND SOLUTIONS IN BC-FL SYSTEMS

While blockchain can indeed enhance the capabilities of the
FL systems and mitigate certain limitations, it is imperative to
duly recognize and confront the accompanying drawbacks. In
this section, we will delve into the principal challenges entailed
in the integration of blockchain into FL and the corresponding
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TABLE V

COMPARISON BETWEEN DIFFERENT SOLUTIONS FOR EACH EFFICIENCY CHALLENGE

Ref. Solutions Detailed methods Dataset Evaluation indicators
Cao [121] Blockchain topology DAG blockchain MNIST Accuracy, loss, iteration delay
Consensus algorithm, Two-layer blockchain, Raft, .
Cheng [107] blockchain topology PBFT - Latency reduction
Consensus algorithm, . . _— N .
Feng [108] blockchain topology Two-layer blockchain, sharding MNIST Accuracy, time cost
Hieu [122] RL DRL . Energy consumption, latency, total
payment
Li [123] Consensus algorithm committee ct()flscnsus FEMNIST accuracy, communication overhead
mechanism
Lu [60] RL, blockchain DAG blockehain, DRL - Accuracy, time cost, agent reward,
cumulative cost
e . - - DarkCOVID, Running latency, block verification
Nguyen [61] Consensus algorithm Proof of reputation ChestCOVID latency, Accuracy, Loss
Neguyen [62] RL DRL, A2C SVHN, Fashion-MNIST ~ Aceuracy, “gel‘i‘o:‘”ard' latency,
Qi [64] Consensus algorithm Modified PBFT Diabetes Breast Cancer Accuracy, time cost, gas cost
Qu [99] Consensus algorithm Proof of federalism CIFAR-10 Accuracy
Consensus algorithm, Two-layer blockchain, proof of Latency, communication overhead,
Xu [102] blockchain topology credit, efficient BFT MNIST data throughput
Zhao [71] RL Federated DDQL - Agent reward, latency
Wang [115] Blockchain topology Two-layer blockchain TSP, FMNIST Accuracy, energy consumption,
learning utility
. Consensus algorithm, Blockchain sharding, i Accuracy, training Latency, testing
Yuan [74] blockchain topology DAG-based mainchain MNIST, Penn Trecbank perplexity
. . Blockchain sharding, MNIST, KMNIST, Accuracy, agent reward, reputation
Lin [89] Blockehain topology, RL DRL-based sharding FMNIST, CIFAR-10 of nodes
e o) (Existing SOluﬁonS\ based on PoS [25]. This implies that, without optimization,
efficiency issues challenges using PoW-based BC-FL systems results in a runtime over-
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Fig. 8. Efficiency challenges and related solutions in the BC-FL systems. The
efficiency of blockchain is susceptible to factors such as network and computing
overhead. Consequently, BC-FL systems potentially lead to a decrease in overall
efficiency. In response to thus challenges, multiple strategies are contributed
to mitigate the reduction in system efficiency. These methods include but
not limited to, efficient consensus mechanisms, reinforcement learning, and
optimized blockchain topologies.

solutions, which can be broadly classified into three key aspects:
efficiency, security, and storage.

A. Efficiency Challenges and Solutions

The processing capacity of blockchain systems is inherently
limited. For instance, Bitcoin can only handle seven transac-
tions per second [118]. In contrast, modern centralized payment
systems can process thousands of transactions per second [119].
Fig. 8 illustrates the efficiency challenges faced by blockchain in
BC-FL systems. Unlike centralized systems, blockchain systems
necessitate additional steps such as verification, communica-
tion, and network-wide consensus to maintain normal opera-
tions, which reduces the efficiency when integrating blockchain
with FL systems. For instance, with 200 nodes, Biscotti takes
approximately 13 times longer than FL to achieve the same
accuracy [120]. Biscotti’s consensus protocol is based on PoS.
According to experiments by Wang et al. BC-FL systems based
on PoW require roughly 10 times more runtime than those

head approximately 100 times that of traditional FL systems.
Current BC-FL systems address these efficiency issues through
various methods, including efficient consensus mechanisms,
reinforcement learning, and optimized blockchain topologies.
A summary of the pertinent literature is provided in Table V.

1) Efficient Consensus Algorithms: The PoW consensus pro-
tocol provides robust resistance against Sybil attacks on the
public chain, ensuring a strong defense against malicious nodes.
However, a primary drawback of the PoW mechanism lies
in its requirement for a block generation rate that is slower
than the rate of block propagation across the network, aimed
at minimizing the risk of a blockchain fork. Current research
reveals relatively modest transactions per second (TPS) for both
PoW and PoS consensus protocols [124]. Typically, the PoW
protocol achieves TPS figures below 100, while the PoS protocol
reaches less than 1000 TPS. In actuality, the TPS tends to be even
lower; for instance, Bitcoin operates at a mere 7 TPS [125].
Additionally, the competitive nature among miners vying for
block mining rewards escalates energy consumption. Moreover,
suboptimal network conditions of edge devices heighten the
likelihood of forks. In the BC-FL systems, underpinned by a
partially decentralized architecture, the scenario improves to
some extent. Nonetheless, achieving consensus across the entire
network still requires considerable time, impeding the speed
of model aggregation. Consequently, numerous researchers are
dedicating their efforts to the development of efficient consensus
protocols that can enhance the overall operational velocity of the
BC-FL system, all the while aligning with the requirements of
the federated learning process.

In [61], Nguyen et al. contended that certain established
consensus algorithms introduce substantial communication
overhead while striving for consensus. For example, DPoS
necessitates that each blockchain node communicates with
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a minimum of half the nodes within the BC-FL system for
confirmation, leading to redundant validations among these
nodes. To tackle this challenge, they designed a streamlined
consensus mechanism known as Proof of Reputation (PoR).
Within the POR algorithm, every blockchain node is permitted
to validate with just a single other node during the consensus
process, resulting in a significant reduction in validation delays.
However, an environment with highly heterogeneous data can
easily lead to deviations in PoR’s reputation evaluation. In [99],
Qu et al. introduces a Proof-of-Federalism (PoF) consensus
algorithm, which builds upon the foundation of PoW. PoF
leverages the training of FL tasks as a viable alternative to the
challenge of discovering a fitting nonce in PoW, effectively
sidestepping the computational resources typically expended
during the consensus calculation process. Before each training
round commences, intelligent contracts sift through unfavorable
local model parameters and cherry-pick local models that lend
themselves well to global aggregation. During cross validation,
each node singles out the most optimal set of global models.
Upon reaching a predetermined time threshold, the participant
who boasts the highest number of selected global models
emerges as the victorious contender. However, the authors only
uses CIFAR-10 to evaluate the method, which cannot fully
illustrate the superiority of the method.

In [102], Xu et al. proposed a lightweight blockchain network
for FL systems called micro-chain to address the issues of
low transaction throughput and poor scalability. Participants
in FL are divided into multiple small-scale micro chains, each
of which is unified through an advanced inter-chain network
using Byzantine fault-tolerant consensus protocols. Within each
micro-chain, block consistency is achieved using the Proof of
Credit (PoC) algorithm, where committee members are respon-
sible for generating new blocks. Then, a new committee is
randomly selected at the end of each dynasty round. Ledger
consensus is achieved using the Vote-based Chain Finality
(VCF) protocol, where committee member nodes vote to select
the preferred branch in case of network forks. In [123], Li et
al. introduced an innovative committee consensus mechanism
aimed at significantly reducing the required consensus com-
putation. The proposed mechanism selects multiple clients as
committee nodes in each training round, utilizing the data on
these committee nodes as the validation set. The final scores for
each trained client are then determined by taking the median of
the scores of these clients. These scores are subsequently used to
perform global model aggregation by selecting a specific number
of clients with the highest scores. However, authors store the
model on the blockchain, resulting in a lot of storage overhead.

2) Reinforcement Learning: RL is a machine learning al-
gorithm that enables an agent to interact with the environ-
ment, learn from its experiences, and take action accordingly.
The ultimate objective is to maximize the cumulative reward
obtained by the agent over time. The traditional optimiza-
tion methods are ineffective in the BC-FL system because
of the system’s complexity, a large number of participants,
and their limited computing and communication resources. To
address these challenges and achieve better results, RL can
be utilized to optimize resource allocation and schedule the
resources of each client based on signals received from them.
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This can potentially reduce system delays and lead to improved
performance.

To apply RL in the BC-FL system, there are several funda-
mental steps to follow. First, the system designer must define the
environment based on specific circumstances, such as the param-
eters of the client and network conditions. This environment can
be modelled as a Markov decision process. Second, the agent’s
action space should be defined, which includes factors such as
the energy consumed by the device during training and the block
generation difficulty. Third, defining the reward is essential.
In general, the reward in the system can be based on overall
training delay that encourages the agent to find ways to reduce
the system delay effectively. Finally, RL training is performed
using a specific algorithm. The agent learns how to optimize
resource allocation within the BC-FL system under different
environmental scenarios through continuous interaction with the
environment.

In [122], Hieu et al. used the deep reinforcement learning
method [126] to control the data and energy used for training
and block generation in the device. By judiciously allocating
resources, they were able to mitigate the system delay and
enhance overall system efficiency. In [60], Lu et al. used the Deep
Q-learning (DQL) [126] method to facilitate client selection
for the FL process. They formulated a joint optimization plan
by considering the client’s available wireless transmission rate,
client computing power (CPU frequency), and the current selec-
tion status of clients as the state of the DQL method. The reward
function is designed as a weighted sum of the loss function
of each node, the computation time, and the communication
time. This approach leads to a high level of model accuracy
while maintaining a low global system cost. The proposed algo-
rithm design shows promising results in performance evaluation,
indicating its potential in real-world applications.

In [71], Zhao et al. proposed a BC-FL system for vehicle net-
works. The proposed system allows autonomous vehicles (AVs)
to offload part of their computing tasks to edge servers (ESs),
effectively reducing local computation latency, communication
latency, and blockchain consensus latency. To achieve this, the
authors employed a federated duel deep Q-learning (DDQL)
algorithm [127] and deployed it to each AV to enable them to
take action according to the changing external environment. The
state space of the proposed DDQL includes wireless channel
conditions, data set quality, and packet error rate, where AV's se-
lect offload strategy, wireless channel, and CPU-cycle frequency
based on the DDQL algorithm.

In [62], Nguyen et al. applied the DRL method based on a
parameterized advantage actor-critic (A2C) algorithm [128] to
a multi-server edge computing scenario to reduce the overall
system latency. Their proposed hybrid discrete-continuous ac-
tion DRL algorithm takes into account various factors such as
data size, channel state, broadband state, computation state, and
hash power to determine whether an edge node should perform
computation offloading. In case of offloading, the agent needs to
decide on the corresponding channel selection, power allocation
and other transmission necessary parameters. In case of non-
offloading, the agent needs to decide on the necessary parameters
for training such as the hash power allocation for local computa-
tion. Unlike existing purely discrete or purely continuous action
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DRL algorithms, the authors proposed a hybrid model where
resource allocation is continuous, while the offloading decision
is discrete, leading to improved training performance.

3) Optimized Blockchain Topology: The topological struc-
ture of a blockchain system is a crucial factor that impacts
information transmission and significantly influences the sys-
tem’s efficiency and scalability. Modifying the topology of the
blockchain can potentially improve its efficiency, which has been
demonstrated in some papers in the BC-FL systems [129], [130].
The topology of a blockchain system includes the physical and
logical topology, both of which can affect the system’s efficiency.

Improving the physical topology involves considering the
node layout, physical location, and network topology. For in-
stance, positioning relevant nodes near the data source can
reduce the network delay, altering node connections’ topology
can enhance network transmission efficacy, and using edge
computing can reduce the computing burden of clients.

The logical topology of the blockchain refers to how trans-
actions and blocks are verified and added, and it can impact
the processing speed and scalability of the system. The ini-
tially proposed blockchain has a linear chain structure, and
data records are processed serially. The Directed Acyclic Graph
(DAG) blockchain adopts the organization method of a directed
acyclic graph, where multiple preceding blocks point to one
block. Compared with linear chain blockchains, it features high
concurrency and weak synchronization. Cao et al. utilized DAG-
based blockchains to reduce resource consumption and address
the issues of device asynchrony and anomaly detection [121].
However, there are problems such as decreased verifiability
and difficulty in model convergence. To solve these problems,
Zhang et al. proposed the TGFL, a BC-FL system based on
the tree-graph blockchain, which supports verifiable and semi-
asynchronous training [131]. TGFL can improve the efficiency
of the system while ensuring model convergence.

In addition, there are some improvements that involve both
the physical and logical topology of the blockchain. One such
improvement is the deployment of a two-layered blockchain
architecture, which comprises two relatively autonomous
blockchains —the main-chain and the sub-chain. The sub-chain s
responsible for interfacing with peripheral devices and executing
swift consensus algorithms. Meanwhile, a subset of nodes within
the sub-chain are nominated to constitute the main-chain. Typi-
cally, the main-chain utilizes Byzantine fault-tolerant consensus
algorithms to ensure the security of the system.

In [107], Cheng et al. proposed a BC-FL system based on a
two-layer blockchain architecture. The lower-layer blockchain is
responsible for connecting devices to achieve strong consistency
and a high consensus rate. Within a short period of time, the
lower-layer blockchain needs to reach a consensus while only
considering the problems of equipment failure and omission.
To this end, the Raft protocol is employed, which is more
efficient despite lacking Byzantine fault tolerance. The upper-
layer blockchain connects various lower-layer blockchains and
is designed to prevent malicious nodes and resolve Byzantine
faults. Thus, the PBFT algorithm is employed, which can ef-
fectively resist Byzantine attacks but requires a longer time
frame for consensus. The upper-layer blockchain’s nodes are
super nodes with robust computing power selected from the
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Fig. 9. Security challenges and related solutions in the BC-FL systems.
Malicious nodes pose a threat to the blockchain within the BC-FL system through
two distinct avenues: privacy leakage and consensus mechanisms. The former
capitalizes on the blockchain’s data transparency to breach access to model
information stored within it, whereas the latter employs attacks via the straight-
forward consensus mechanism inherent in the BC-FL system. In response to
these challenges, contemporary solutions are predominantly centered around the
development of diverse privacy protection algorithms and the implementation
of exceptionally secure consensus mechanisms. .

lower-layer blockchain. The upper-layer blockchain has fewer
nodes, reducing the traffic required for consensus. At the same
time, these nodes have stronger computing power, and these two
reasons together increase the consensus speed of the system.
However, the assumptions in the author’s experiment are rela-
tively ideal, and problems such as actual network fluctuations
are not considered.

B. Secure Challenges and Solutions

Integrating blockchain into FL systems holds the potential
to significantly bolster system security. However, the success-
ful execution of such integration in BC-FL systems hinges
greatly upon the scrupulous deliberation of system designers and
the implementation of effective combination strategies. Inade-
quate integration of blockchain may give rise to supplementary
predicaments. The security challenges and related solutions in
the BC-FL systems are evidenced in Fig. 9.

As shown in Fig. 9, the transparent nature of blockchain data
raises concerns about storing sensitive information, potentially
leading to violations of privacy. Additionally, extant attack meth-
ods targeting blockchain systems, such as Sybil attacks [132],
have the capability to compromise the security of the BC-FL
system. An examination of recent BC-FL systems has unveiled
several instances wherein Sybil attacks and breaches of privacy
remain plausible.

1) Privacy Leakage: The immutability and transparency in-
herent in blockchain play a pivotal role in safeguarding the
integrity of a system. Blockchain data can be validated by all
clients, and it remains impervious to unauthorized tampering
by malicious entities. However, this approach also brings forth
a potential vulnerability, as malevolent nodes can effortlessly
access sensitive data stored on the blockchain. In BC-FL sys-
tems, multiple research endeavors permit clients to store local
models or gradients on the blockchain, along with their re-
trieval methods [133], [134]. Regrettably, this allowance opens
the door for malicious clients to potentially deduce sensitive
worker data. To tackle this issue, several scholars suggested the
implementation of diverse cryptographic techniques [56], [135].
These techniques serve to fortify the system’s privacy protection
capabilities while mitigating the potential privacy hazards.

Homomorphic Encryption (HE) represents an encryption
technology that facilitates direct computations on encrypted
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data, empowering aggregators to execute model aggregation
operations without necessitating the decryption of local mod-
els [64], [109], [112], [136]. In [136], Sun et al. designed a
Bresson-Catalano-Pointcheval based homomorphic noise mech-
anism to secure gradient values and pinpoint malevolent data
owners. However, the encryption time of this method is propor-
tional to the number of parameters, which limits the size of the
model used. Meanwhile, in [109], Jia et al. seamlessly incor-
porated the homomorphic encryption scheme Paillier [137] into
K-means clustering, distributed random forest, and distributed
AdaBoost components in the BC-FL systems. The scheme offers
a privacy-preserving solution for client data when employing
these machine learning algorithms. In another study [112],
Miao et al. harnessed Fully Homomorphic Encryption (FHE)
to facilitate secure model aggregation. However, FHE will incur
huge time overhead. Concurrently, they leveraged blockchain
to ensure the transparency of the aggregation process. In [114],
Sun et al. introduced a verification procedure in [104] before
local update aggregation to fend off poisoning attacks. They
introduced differential privacy noise during the verification
process to obfuscate local updates, thereby enhancing privacy.
Additionally, in [55], Fang et al. outlined a secure and verifiable
local update aggregation scheme, replacing differential privacy
technology with the Shamir Secret Sharing technique [138] to
ensure the correctness of confidential sharing.

Multiple studies also employed differential privacy to protect
the privacy of FL clients [61], [80], [97]. In [97], Ma et al.
delved into a differential privacy solution for the BC-FL system,
where noise is added to the local data features to uphold local
privacy and pseudo-noise sequences are adopted to identify
inactive clients. Similarly, in [139], Abadi et al. incorporated
tailored noise into the data prior to sharing, effectively obscuring
the actual data values while maintaining usability even after
noise integration. Within BC-FL systems integrating differential
privacy, itis customary for clients to introduce noise to the model
prior to uploading the local model, thereby ensuring privacy
protection. In [88], Zhao et al. employed differential privacy
to safeguard the privacy of individual clients by applying it to
the extracted data features of each client. Additionally, Qu’s
work [99] presented an enhanced differential privacy algorithm
built upon generative adversarial networks, offering a means of
preserving the privacy of local models.

Secure Multi-Party Computing (SMPC) stands out as another
promising avenue for ensuring privacy of BC-FL systems [106],
[140]. SMPC represents a versatile cryptographic tool that em-
powers distributed parties to collaboratively compute diverse
functions while withholding their confidential inputs and out-
puts [141]. Within the BC-FL system incorporating SMPC,
every client employs the SMPC protocol to join forces and
aggregate the global model. SMPC can be instantiated as a
smart contract on the blockchain, with these contracts delin-
eating computation rules and guaranteeing proper protocol ex-
ecution. In [106], Awan et al. designed a meticulously algo-
rithm that leverages homomorphic encryption and proxy re-
encryption grounded in the Paillier encryption algorithm. This
technique involves encrypting each local model, thereby pre-
venting the model aggregator from accessing individual models.
Nevertheless, upon aggregating the encrypted local models, the
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aggregator can obtain an unencrypted global model, thus pre-
serving the confidentiality of each client’s data.

Several studies explored alternative approaches to address the
privacy concerns within the BC-FL system [55], [142], [143].
For instance, in [142], Wei et al. introduced a chameleon hash
scheme with a modifiable trapdoor (CHCT) as a countermea-
sure to potential privacy leaks on the blockchain, effectively
creating an adaptable blockchain structure. The CHCT employs
trapdoors to generate hash collisions, resulting in identical hash
values. When sensitive or erroneous data is identified on the
blockchain, clients can utilize CHCT to amend the relevant data.
However, strict adherence to a well-defined set of procedures is
imperative when modifying the blockchain to safeguard its repu-
tation as a trusted third-party entity. In [55], Fang et al. employed
aprivacy-preserving strategy to store the gradient’s commitment
on the blockchain and mapped it to an elliptic curve point.
Simultaneously, the gradient is obscured using a Pseudorandom
generator-based mask, which can subsequently be removed to
restore the accurate global gradient once all local gradients are
incorporated. Similarly, [143], Guo et al. presented a blockchain-
based obfuscation transmission mechanism, shielding the local
models of FL edge nodes from external scrutiny by potential
attack devices. The blockchain is initially divided into distinct
branches starting from the genesis block, each corresponding
to a training device. A hash key block on each branch stores
the hash key function published by the server. Qin et al. applied
model compression techniques to protect model privacy [144].
However, their work lacks ablation experiments, leaving the im-
pact of model compression techniques on performance unclear.

2) Sybil Attacks: Sybil attacks have garnered extensive at-
tention within the blockchain field, owing to their potential to
compromise the integrity and security of blockchains [132].
Thus attacks involve an assailant generating numerous false
identities or nodes within the network, affording them the means
to manipulate the system’s dynamics [145]. Established methods
like PoW and PoS have demonstrated some degree of resilience
against Sybil attacks [146], [147]. Within the context of the
BC-FL system, certain endeavors have adopted lightweight con-
sensus protocols or rapid information transmission methods to
bolster system speed, inadvertently rendering them susceptible
to Sybil attacks [60], [108], [120]. For instance, in [60], the Raft
protocol is harnessed to expedite consensus within the underly-
ing blockchain. However, this approach exposes a vulnerability
where an attacker could subvert the leader election process
through the creation of fabricated identities. This disruption
might impede the proper selection of legitimate leaders or lead
the system astray from its intended behavior. In another instance,
Feng et al. employed a localized model update chain facilitated
by inter-device communication for efficient blockchain infor-
mation transfer [108]. While inter-device communication offers
improved network performance and reduced communication
costs, it also presents a vulnerability to Sybil attacks [120].
In the realm of inter-device communication, attackers exploit
the creation of multiple spurious identities or devices to gain a
foothold in the network, inundating it with counterfeit traffic or
acquiring sensitive information.

Another group of research tried to employ various consen-
sus mechanisms to counter Sybil attacks [55], [104], [120],
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TABLE VI
REAL WORLD APPLICATIONS OF BC-FL SYSTEMS

Ref. Domain Model Dataset Blockchain’s Role Potential Disadvantage
[153] Medical imaging ResNet-34 Fashion-MNIST, CIFAR10 Reputation mechanism provision, secu- Not validated on medical datasets
rity improvement, decentralization
[154] Covid-19 detection VGGle6, COVID-19 patient dataset Security improvement, trust building ~ Lacking ablation experiment
DenseNet, etc.
[155] Medical image analysis 2D U-net Prostate, Camelyon17 Security improvement, incentive mech- PoW brings large computational overhead
anism provision
[156] Disease prediction DNN PBMC transcriptome dataset, X-ray Security improvement, Decentralization -
dataset, etc.
[157] Digital twin DRL model CIFARI0 Security improsvement, permission con- Using a single dataset, generalization cannot be
trol verified
[56] Drones CNN EMNIST Decentralization, security improvement, No evaluation on real-world datasets
identity authentication
[158] Internet of vehicles - Simulating dataset Data integrity and immutability en- Experiment fails to considering communication
surance capability differences
[159] Drones for disaster CNN, MobileNet EMNIST, Real disaster dataset Reputation mechanism provision, secu- The mobility and energy limitations of drones are
response rity improvement not fully considered
[160] Autonomous vehicles CNN Traffic-Light data sets Decentralization, Security improvement, Using a single dataset
incentive mechanism provision
[161] Traffic prediction LSTM DelDOT traffic flow dataset, PeMS Data integrity and security ensurance ~ Not consider dynamic traffic environment
Bay dataset
[162] Intelligent transportation - UNSW-NBI15 reputation mechanism provision, secu- Using a single dataset
rity improvement
[163] Mobile crowdsourcing CNN Fashion-MNIST incentive mechanism provision, security Not considering poisoning attack
improvement
[82] Internet of vehicles ANN NSL-KDD reputation mechanism provision, secu- The impact of frequent node entry and exit in a
rity improvement dynamic network environment is not considered
[66] Industrial internet of things NN Turbofan engine degradation simu- reputation mechanism provision, fair- Not considering device heterogeneity, single type
lation dataset ness and credibility ensurance dataset
[164] Device failure detection LR, NN Air-conditioning systems dataset reputation mechanism provision, data The experiment was small-scale
integrity and auditability ensurance
[165] Vessel collision avoidance ConvLSTM Generated dataset representing ships Security, transparency and traceability Still has problems of missed detection and inac-
mobility ensurance curate position
( \ both the local and global models and various FL-related data and
Blockchain issues - . . .
Etirg parameters, thereby becoming the node with the highest storage
P solutions . . .
Slocksize imit BC.FL storage Distributed demand in the FL system. When enhancing the FL system with
storege redundaney — 7 ate blockchain, the BC-FL system must inevitably store diverse
Blockchai t . . . . . ..
P e ‘ s ‘ information on the blockchain, resulting in significant storage
A [ aree Blackehain vodel overhead. Furthermore, most blockchain platforms currently
by . N . . . . . . .
features ;/" torsge stie chunking impose limitations on transaction or block size. For instance,
Laree parameter number | usorse) | Bitcoin has a block size limit of 1 MB, and while Ethereum does
G R T not have a theoretical block size limit, its gas limit effectively
- @@
restricts the size of transactions [149]. If the BC-FL system
Fig. 10.  Storage challenges and related solutions in BC-FL systems. requires direct storage of large volumes of data within blocks,

[148]. For instance, in [104], Zhang et al. utilize a validator
committee selection scheme akin to the Algorand consensus
algorithm [148], utilizing verifiable random numbers to thwart
Sybil attacks. In [55], Fang et al. designed a secure aggregation
protocol that directly applies the Algorand consensus algorithm
to fend off Sybil and tampering attacks. The protocol uses
pairwise random masks to impede Sybil attacks. Shayan et
al. [120] introduced a fully decentralized system to effectively
mitigate Sybil attacks by judiciously defining reputation levels.
They used blockchain and cryptographic primitives to defends
against known attacks.

C. Storage Challenges and Solutions

The storage requirements for blockchain systems are inher-
ently cumbersome, as each full node is required to maintain a
complete backup of the entire system. This leads to a linear
increase in the total storage size with the number of full nodes.
In FL, clients transmit their local models to a central server and
download the global model. The server is responsible for storing
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such as model parameters, this could surpass the blockchain
system’s storage capabilities.

As illustrated in Fig. 10, the storage challenges of the BC-FL
system are primarily twofold:

Constrained storage capacity: the limited block size makes
storing some data that takes up storage space difficult.

Redundant storage demands: a large amount of training-
related data is stored in the blockchain, which brings unnec-
essary information redundancy and terrible storage challenges
to the entire BC-FL system.

As depicted in Fig. 10, the current landscape presents two
prevailing strategies to tackle the storage challenges in BC-FL
systems. The first approach entails chunking the FL models
or data into distinct segments, which are then stored on the
blockchain with constrained block size [150]. This methodology
necessitates prior negotiation of a serialization plan among
nodes. Subsequently, each split data’s size is logged as sup-
plementary information within the transaction block. Gradual
storage of the data on the BC-FL system is accomplished through
the initiation of transactions. This approach incurs significant
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communication overhead. Fang et al. addressed this issue by
employing the Chinese Remainder Theorem to divide gradients
into k parts and compress them, reducing the size of each gra-
dient to % of its original size and thus lowering communication
overhead within the system [55]. Despite this improvement,
the communication overhead remains higher than that of the
second solution. Therefore, we consider that such techniques
possess restricted applicability and are suitable only for systems
characterized by a few supernodes, each endowed with robust
storage capabilities capable of managing storage redundancy.

The second solution involves utilizing distributed storage
technology to house the model, while retaining only the
acquisition method on the blockchain [66], [88], [135], [151],
[152]. For example, the InterPlanetary File System (IPFS)
employs content addressing for file storage and retrieval,
allowing users to access files using the hash value associated
with the file [56]. In this methodology, solely the hash of the
respective model finds its place on the blockchain. Additionally,
Xu et al. incorporated a model producer within the system to
provide download links to other nodes [96]. The blockchain
then retains the model hashes and corresponding download links
solely as part of this innovative approach. These approaches
address the intricate interplay between blockchain and FL
requirements, paving the way for more efficient and effective
storage management within BC-FL systems.

Generally, the storage limitations of blockchain do not neces-
sarily affect the choice of models. This is because many works
do not store model-related information on the blockchain. Even
if storage is required, some distributed storage solutions can be
used. The models that BC-FL used can choose are consistent
with those of FL.

V. DISCUSSION

A. Future Research Directions

1) Combination Blockchain With VFL and FTL: In the main
sections of this survey, we did not differentiate between HFL,
VFL, and FTL, as most existing BC-FL systems are based on
HFL. In those BC-FL systems based on VFL and FTL, the
objectives and methods involving blockchain are similar to those
in HFL-based systems. However, VFL and FTL involve many
additional steps. Taking VFL as an example, clients do not
have complete data features, so tasks such as encrypted entity
alignment and model splitting are required, making it more
complex than HFL. We hope that future researchers will explore
how blockchain can play a role in the unique steps of VFL and
FTL, further enhancing their security, efficiency, and credibility,
and driving the advancement of this field.

2) Lightweight Blockchain Solutions: In FL systems,
particularly in cross-device FL, clients typically exhibit
constrained communication and computational capacities. In-
troducing blockchain on each client might further burden the
communication and computational resources of edge devices.
The majority of blockchains in BC-FL systems maintain a rather
general-purpose nature, with only a handful being meticulously
customized for these systems. The forthcoming challenge lies in
the advancement of consensus algorithms, topology structures,
communication methodologies, and other enhancements aimed
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at enhancing the compatibility of blockchain systems with the
FL framework.

3) Commercial Applications: Despite the emergence of nu-
merous BC-FL papers, most of them only conduct local simula-
tions or small-scale experiments, making it difficult to determine
whether their proposed methods are effective in large-scale ap-
plications. Additionally, there is currently a lack of commercial
applications for large-scale BC-FL systems. Therefore, future
research needs to focus on applying BC-FL systems to large-
scale commercial applications to validate their effectiveness and
commercial value.

B. Combination of Blockchain and Federated Learning

The integration of blockchain into FL necessitates addressing
two critical questions: which nodes operate the blockchain and
what data is stored on the blockchain. They significantly impact
the system’s performance, security, and efficiency, and are highly
dependent on the specific application scenario.

Blockchain Node Selection: A fully decentralized approach is
well-suited for scenarios where transparency, security, or trust
are paramount, and where computational and storage resources
are evenly distributed. Examples include inter-hospital collab-
orations [24], [156] and drone networks [56]. This approach
fosters a highly democratic and transparent system, avoiding
excessive control by any single entity. However, it requires each
node to possess substantial computational and storage capabil-
ities. In contrast, a partially decentralized approach is better
suited for heterogeneous environments with nodes performing
different functions or in applications with hierarchical struc-
tures. For instance, supernodes run the blockchain in industrial
scenario, while other nodes focus on FL tasks and interact with
the blockchain through these supernodes [80], [166].

Data Storage on the Blockchain: Storing training-related data,
such as model parameters, on the blockchain enhances security
and ensures data integrity, making it suitable for scenarios
with numerous malicious nodes or stringent security require-
ments [106]. Storing incentive-related data supports a fair and
transparent FL environment, fostering a healthy FL. marketplace,
such as FL crowdsourcing [88]. Reputation data stored on the
blockchain can improve system security [167] or serve as a basis
forincentives [81]. Additionally, the use of smart contracts offers
flexibility and scalability for various applications [63], [110].

The integration of blockchain and FL is highly adaptable
and context-dependent. For example, in a drone-based BC-FL
deployment, the selection of nodes to run the blockchain would
depend on factors such as the number of drones, their computa-
tional and communication capabilities, and the specific security
requirements of the mission. Simultaneously, what data is stored
on the blockchain is selected based on the execution mission and
runtime environment. The design of a BC-FL system should be
based on a meticulous evaluation of the specific requirements
and characteristics of the application at hand.

C. Real World Applications

In Table VI, we investigate and enumerate the real-world
applications of BC-FL systems for readers’ reference. Currently,
BC-FL systems find application in a wide array of domains,
including healthcare, intelligent transportation and industry.
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VI. CONCLUSION

Blockchain-empowered Federated Learning (BC-FL) has
emerged as a promising research area. This survey explored how
blockchain enhances FL by improving security, preventing sin-
gle points of failure, and enabling reputation and incentive mech-
anisms. We also discussed key challenges, including efficiency,
storage, and security issues, along with existing solutions. Fi-
nally, we discussed real-world applications, integration strate-
gies, and future research directions. We hope this work provides
valuable insights and accelerates further exploration in BC-FL.
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