
Neurocomputing 418 (2020) 79–90
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Zeroing neural network with comprehensive performance and its
applications to time-varying Lyapunov equation and perturbed
robotic tracking
https://doi.org/10.1016/j.neucom.2020.08.037
0925-2312/� 2020 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: lkl@hnu.edu.cn (K. Li), xiaolin860728@163.com (L. Xiao).
Zeshan Hu a, Kenli Li a,⇑, Keqin Li a,b, Jichun Li c, Lin Xiao d,⇑
aCollege of Information Science and Electronic Engineering, Hunan University, Changsha 410082, China
bDepartment of Computer Science, State University of New York, New Paltz, NY12561, USA
c School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK
dHunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha 410081, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 November 2019
Revised 21 June 2020
Accepted 4 August 2020
Available online 1 September 2020
Communicated by Long Cheng

Keywords:
Finite-time convergence
Noise tolerance
Stable residual error
Tracking control
Zeroing Neural Network (ZNN)
The time-varying Lyapunov equation is an important problem that has been extensively employed in the
engineering field and the Zeroing Neural Network (ZNN) is a powerful tool for solving such problem.
However, unpredictable noises can potentially harm ZNN’s accuracy in practical situations. Thus, the
comprehensive performance of the ZNN model requires both fast convergence rate and strong robust-
ness, which are not easy to accomplish. In this paper, based on a new neural dynamic, a novel Noise-
Tolerance Finite-time convergent ZNN (NTFZNN) model for solving the time-varying Lyapunov equations
has been proposed. The NTFZNN model simultaneously converges in finite time and have stable residual
error even under unbounded time-varying noises. Furthermore, the Simplified Finite-te convergent
Activation Function (SFAF) with simpler structure is used in the NTFZNN model to reduce model com-
plexity while retaining finite convergence time. Theoretical proofs and numerical simulations are pro-
vided in this paper to substantiate the NTFZNN model’s convergence and robustness performances,
which are better than performances of the ordinary ZNN model and the Noise-Tolerance ZNN (NTZNN)
model. Finally, simulation experiment of using the NTFZNN model to control a wheeled robot manipula-
tor under perturbation validates the superior applicability of the NTFZNN model.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

The Lyapunov equation plays a crucial part in many scientific
and engineering fields. For instance, it can be applied in communi-
cation [1], control theory [2,3] and automatic control [4,5]. Fur-
thermore, Lyapunov equation is indispensable in the domain of
optimal control. Thus, the solution of Lyapunov equation has
earned a large amount of efforts on account of its extensive appli-
cations. For solving Lyapunov equation, approaches that have the
longest history should be traditional numerical algorithms. In [6],
an iterative algorithm was proposed to tackle Lyapunov equation
with Markov jump. Other types of numerical algorithms for Lya-
punov equation have also been investigated. [7] proposed an iter-
ative algorithm based on the gradient to solve this problem, while
[8] presented a method based on minimal residual error. However,
the minimum time complexity of these numerical algorithms is
about the cube of dimensions of input matrix. Thus, solving large
scale Lyapunov equations using these numerical algorithms
becomes a time consuming task. The large time cost of numerical
algorithms has considerably limited their application ranges, espe-
cially for online Lyapunov equation problem.

Nowadays, we can accelerate many algorithms by taking advan-
tage of hardware or software level parallelism, but this approach is
hard for above mentioned numerical algorithms because of their
serial processing nature. Therefore, Artificial Neural Networks
(ANNs) including the Recurrent Neural Networks (RNNs) as other
types of approaches, have been found efficient in solving various
numerical computation, optimization and robot control problems
[9–13] due to their parallel and distributed computing properties.
Gradient-based Neural Network (GNN) is a variation of RNN and
was investigated for the online stationary Lyapunov equation
[14–17]. GNN uses the norm of error matrix as its performance
index and the neural network will evolve along the gradient-
descent direction until its performance index converges to zero.
GNN performs well in stationary Lyapunov equation problems,
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but it suffers from large residual error on solving time-varying Lya-
punov equations and such error exists even after infinite time of
evolving, which promotes researchers to overcome this drawback
by discovering new neural network models.

Under such background, Zeroing Neural Network (ZNN) as a
special type of RNN was proposed and utilized in Refs. [18–21].
This kind of RNN model utilizes the velocity information of time-
varying coefficients and uses the error matrix instead of its norm
as performance index, successfully surpassing GNN model on solv-
ing both stationary and nonstationary Lyapunov equations. Never-
theless, the ordinary ZNNmodel is far from being perfect because it
uses linear function as activation function and can only converge to
the solution exponentially. That is, its error cannot converge to
zero in finite time. Recently, many research works about speeding
up the convergence speed of ANNs are springing up [22–24].
Therefore, to improve the convergence speed of the ordinary ZNN
model, a finite-time convergent ZNN model which exploited the
Sign-Bi-Power (SBP) activation function is presented in Ref. [25].
Another practical problem is that ZNN usually works in an environ-
ment that exists various noise and this can potentially decrease the
accuracy of the neural network, but the general ZNN design for-
mula didn’t take this factor into account. Thus, [26–28] designed
a Noise-Tolerance ZNN (NTZNN) model to enhance ZNN model’s
robustness against additive noise. However, NTZNN’s activation
function is linear function and cannot be changed, so that it cannot
converge in finite time. In this paper, we present a Noise-Tolerance
Finite-time convergent ZNN (NTFZNN) model for the time-varying
Lyapunov equation problem following the motivation that both
finite-time convergence and noise suppression ability are highly
demanded in ZNN applications [29]. The NTFZNN model not only
converges to the accurate solution of time-varying Lyapunov equa-
tion in finite time in noise-free environments, but also have less
stable residual error than the NTZNN model within additive noise
polluted environment.

The main contributions of this paper are summarized as below:

1) A novel NTFZNN model is developed for solving time-
varying Lyapunov equation problem, which possesses
finite-time convergence and powerful additive noise sup-
pression ability at the same time.

2) Using the SFAF (Simplified Finite-time convergent Activation
Function), the NTFZNNSFAF (NTFZNN using SFAF) model is
proposed, which has simpler structure and lower calculation
complexity than the NTFZNNSBP (NTFZNN using SBP) model
but still being finite-time convergent.

3) The convergence time upper bound and stable residual error
upper bound of the NTFZNNmodel have both been quantita-
tively analyzed and then validated by simulation experi-
ments. Besides, in the robustness analysis, the more
practical time-varying unknown noises are investigated
rather than the usual constant or limited known noises.

The rest of this paper is organized into 6 sections. In Section 2,
the problem description and some preliminaries of the time-
varying Lyapunov equation are provided for the following discus-
sion and analyses. In Section 3, the NTFZNN model is designed
for solving the time-varying Lyapunov equation, and two finite-
time convergent activation functions have been introduced. In Sec-
tion 4, the NTFZNNmodel’s convergence performance in noise-free
environment and robustness performance when perturbed by
additive noises have been analyzed in detail. In Section 5, numer-
ical simulations and comparisons are presented to verify the previ-
ous theoretical conclusions. In Section 6, the NTFZNN model is
successfully applied in controlling a mobile robot manipulator to
track the desired path with additive noise perturbation, which
has further validated the NTFZNNmodel’s applicability and superi-
ority. Section 7 concludes this paper briefly.

2. Problem description and preliminaries

In this paper, the problemwemainly concerned about is solving
the time-varying Lyapunov equation. Let MðtÞ 2 Rn�n be a nonsta-
tionary coefficient matrix with QðtÞ 2 Rn�n being a nonstationary
symmetric positive-definite matrix. We have following equation:

MTðtÞXðtÞ þ XðtÞMðtÞ ¼ �QðtÞ: ð1Þ
Then, the above equation is widely known as the Lyapunov

equation, where XðtÞ 2 Rn�n is a unique time-varying matrix that
we should obtain given thatMðtÞ and QðtÞ both satisfied the unique
solution condition [17]. In the following paper, we use AðtÞ 2 Rn�n

to denote the precise solution of (1) for efficient expression. Under
such preliminaries, in this paper, we focus on proposing a NTFZNN
(Noise-Tolerance Finite-time convergent ZNN), which not only
makes use of the latest activation function, but also newly pro-
posed novel activation function.

Generally speaking, in the field of solving time-varying prob-
lems, zeroing neural network is a more powerful tool when com-
pared with conventional gradient-based neural network, because
it eliminates lagging errors which exist in the latter one. Further-
more, [30] shows that ordinary ZNN model can deal with
time-varying Lyapunov equation efficiently as well as converge
to accurate solution exponentially. To lay the foundation of this
paper, the design process of ordinary ZNN model for this problem
(1) can be separated into following procedures:

1) Firstly, construct a matrix type error function to evaluate the
difference between state solution of neural network and the-
oretical solution of (1):
EðtÞ ¼ MTðtÞXðtÞ þ XðtÞMðtÞ þ QðtÞ 2 Rn�n: ð2Þ

2) Then, as the unique solution of (1), AðtÞ is clearly the zero

point of above error function. For the purpose of forcing
EðtÞ to converge to zero, the ZNN model uses the following
evolution formula:
dEðtÞ=dt ¼ �lAðEðtÞÞ; ð3Þ
where l is a design parameter satisfying l > 0;Að�Þ : Rn�n ! Rn�n

denotes a mapping matrix with each of its element being the same
activation function.
3) Finally, substituting (2) into (3) leads to the following ordi-

nary ZNN model for the time-varying Lyapunov equation
problem:
MTðtÞ _XðtÞ þ _XðtÞMðtÞ ¼ � _MTðtÞXðtÞ � XðtÞ _MðtÞ
� _QðtÞ � lAðMTðtÞXðtÞ
þXðtÞMðtÞ þ QðtÞÞ;

ð4Þ

where state solution XðtÞ will change smoothly along with the
evolution of ZNN model as time goes on. Starting from initial
value Xð0Þ 2 Rn�n;XðtÞ converges to the accurate solution AðtÞ
asymptotically. Note that, if linear activation function f ðxÞ ¼ x
is used, model (4) possesses exponential convergence property
[30].

The ordinary ZNN model (4) is enough for theoretical analysis.
But if we want to do simulation experiments or implement this
model, the ordinary ZNNmodel (4) can be transformed into follow-
ing explicit ordinary ZNN model:

N1ðtÞ _xðtÞ ¼ � _N1ðtÞxðtÞ � _N2ðtÞ � lAðN1ðtÞxðtÞ þ N2ðtÞÞ; ð5Þ
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where we define the operation A� B ¼ A� I þ I � B with I being
identity matrix. Under such definition, other parameters in (5)

are: N1ðtÞ ¼ MTðtÞ �MTðtÞ 2 Rn2�n2 ;N2ðtÞ ¼ vecðQðtÞÞ 2 Rn2 and

xðtÞ ¼ vecðXðtÞÞ 2 Rn2 . Besides, the symbol � stands for the well
known Kronecker product, whose detail information can be found
in [17,31]. Another symbol vecð�Þ denotes the operation that stacks
all column vectors of its input matrix into a single column vector.

Mapping matrix in (5) is resized to Að�Þ : Rn2 ! Rn2 due to
vectorization.

3. Design of noise-tolerance finite-time convergent Zeroing
Neural Network

The ordinary ZNN model introduced in Section 2 is able to han-
dle the nonstationary Lyapunov equation well in the ideal noise-
free environment. However, because continuous ZNN models are
mainly implemented in analog circuits, there are many factors that
may create noises. These factors include round-off error, circuit
implementation errors and so on, which can result in the great loss
for ZNN model (4) in accuracy. Therefore, we propose a novel
NTFZNN model with better noise suppression ability for time-
varying Lyapunov equation. To monitor the computation process
of the problem, NTFZNN uses the same error matrix as in the ordi-
nary ZNN model:

EðtÞ ¼ MTðtÞXðtÞ þ XðtÞMðtÞ þ QðtÞ 2 Rn�n: ð6Þ
Then, the design formula of NTFZNN becomes different from the

ordinary ZNN model (4), since it introduces an integral item into
the formula to enhance its noise tolerant ability. The NTFZNNmod-
el’s design formula is presented as below:

_EðtÞ ¼ �lA1ðEðtÞÞ � nA2 EðtÞ þ l
Z t

0
A1ðEðsÞÞds

� �
; ð7Þ

whereA1ð�Þ : Rn�n ! Rn�n andA2ð�Þ : Rn�n ! Rn�n represent mono-
tone increasing mapping arrays which consist of the same activa-
tion functions respectively. Theoretically speaking, A1ð�Þ and
A2ð�Þ can be chosen arbitrarily as long as they satisfy the require-
ment of being finite-time convergent. In this paper, we set them
to be the same to facilitate the following further analyses. Besides,
l > 0 and n > 0 are design parameters used to adjust the neural
network’s convergence speed and noise suppression ability. Now,
the NTFZNN model (7) can be expanded by substituting (6) into
(7), and then we get

MTðtÞ _XðtÞ þ _XðtÞMðtÞ ¼ � _MTðtÞXðtÞ � XðtÞ _MðtÞ
� _QðtÞ � lA1ðEðtÞÞ � nA2

EðtÞ þ l
R t
0 A1ðEðsÞÞds

� �
:

The above neural dynamic is equivalent to the NTFZNN model
(7) and can also be transformed into explicit NTFZNN model simi-
lar to (5):

N1ðtÞ _xðtÞ ¼ � _N1ðtÞxðtÞ � _N2ðtÞ � lA1ðN1ðtÞxðtÞ þ N2ðtÞÞ
�nA2 N1ðtÞxðtÞ þ N2ðtÞð
þl R t

0 A1ðN1ðsÞxðsÞ þ N2ðsÞÞds
�
;

ð8Þ

where N1ðtÞ;N2ðtÞ;xðtÞ are all defined the same as in (5).
It should be pointed out that researchers have investigated the

performance of the ordinary ZNN model under noise perturbed
environment, some methods with the internal noise-tolerance
ability have been proposed to tackle this problem [26,32]. One of
these methods is called Noise-Tolerance ZNN (NTZNN) model
[26], which is also the inspiration source of our NTFZNN model.
The NTZNN model uses following design formula:
_EðtÞ ¼ �lEðtÞ � n
Z t

0
EðsÞds; ð9Þ

where the definition of EðtÞ 2 Rn�n; l > 0 and n > 0 are the same as
in (7). NTZNN performs well in the presence of perturbation, even if
the noise is in the form of additive noise that increases linearly with
time. But since the NTZNNmodel lacks of activation function, which
is an important element contributing to convergence speed of the
ZNN model, it can only achieve the exponential convergence. This
motivates us to propose the NTFZNN model to realize both noise
tolerant and finite-time convergent properties on solving Lyapunov
equation.

In-depth researches about ZNN models have revealed that the
choice of activation functions plays an important role in conver-
gence performance of ZNN models including their variations. Fur-
thermore, nonlinear activation functions usually speed up the
convergence process of ZNN models. Particularly, some functions
can even realize finite-time convergence, one of them being the
well known Sign-Bi-Power (SBP) function [33], whose equation is

wSBPðeijÞ ¼
1
2
sgnpðeijÞ þ 1

2
sgn

1
pðeijÞ; ð10Þ

with p 2 ð0;1Þ, and the definition of sgnpðeijÞ is as follows:

sgnpðeijÞ ¼
epij; eij > 0;
0; eij ¼ 0;
�jeijjp; eij < 0;

8><
>:

where eij is the ijth element of error matrix EðtÞ. Following the idea
of SBP activation function, researchers found that the SBP function
is computing intensive due to the power operation on floating point
number p, which not only increases the burden of computation but
also requires more complex structure. A novel Simplified Finite-
time convergent Activation Function (SFAF) based on the SBP func-
tion is thus proposed [34], whose definition is

wSFAFðeijÞ ¼ b1sgn
pðeijÞ þ b2eij; ð11Þ

where b1 > 0 and b2 > 0 are design parameters. It is clearly shown
that SFAF has simpler structure than traditional SBP function.
Besides, SFAF can accelerate theZNN model to finite-time conver-
gence with even lower upper bound of convergence time.

For concise expression, in the following paper, the NTFZNN
model using SBP and SFAF activation functions will be named as
the NTFZNNSBP model and the NTFZNNSFAF model respectively.
Another thing should be pointed out is that our NTFZNN model
only uses SBP (10) and SFAF (11) as activation functions in the fol-
lowing paper in order to achieve finite-time convergence.

4. Theoretical analysis of noise-tolerance finite-time
convergent Zeroing Neural Network

In this section, we focus on proving NTFZNN to be globally
stable, computing the convergence time upper bound, and analyz-
ing inherent noise suppression ability of the NTFZNNmodel (7). All
of these theoretical analyses eventually illustrate the superiority of
our NTFZNN model. As it has been shown in Section 3, the NTFZNN
model formula (7) is equivalent to the formula (8) and the latter
one is mainly used in the following analyses and experiments. In
addition, the error matrix EðtÞ in (7) becomes the error vector
eðtÞ ¼ N1ðtÞxðtÞ þ N2ðtÞ in (8). Therefore, the design formula of
NTFZNN model (7) can be transformed into the vector form:

_eðtÞ ¼ �lA1ðeðtÞÞ � nA2 eðtÞ þ l
Z t

0
A1ðeðsÞÞds

� �
; ð12Þ

where eðtÞ 2 Rn2 is obtained by stacking all the column vectors of
EðtÞ into a single column vector. In addition, due to the vectorization
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of (7), A1ð�Þ : Rn2 ! Rn2 and A2ð�Þ : Rn2 ! Rn2 become vector-
valued mapping arrays with their elements being unchanged. In
addition, applying the same technique as above, the ordinary ZNN
model (3) can be transformed into the following vector-valued
form:

_eðtÞ ¼ �lAðeðtÞÞ; ð13Þ
where Að�Þ : Rn2 ! Rn2 becomes mapping array of vectors with the
same elements. In order to lay the foundations for the ensuing the-
oretical analyses, we have the following lemmas.

Lemma 1 [35]. Consider a system _x ¼ f ðxÞ; x 2 Rn; f : Rn ! Rn

which has a equilibrium point x ¼ 0 meaning f ð0Þ ¼ 0. Besides, there
exists a Lyapunov candidate function V : Rn ! R that satisfies 1)
VðxÞ ¼ 0 if and only if x ¼ 0; 2) VðxÞ > 0 if and only if x > 0; 3)
_VðxÞ < 0 is true for all x – 0. Then, such system is said to be globally
asymptotically stable.
Lemma 2 [36]. Given smoothly time-varying error vector eðtÞ 2 Rn2

in (13). If a monotonically-increasing odd mapping array Að�Þ is used,
then the ordinary ZNN dynamic (13) is globally stable and its error
vector eðtÞ can converge to the equilibrium point eðtÞ ¼ 0 starting
from a random initial state eð0Þ.
4.1. Convergence analysis

In this section, we will prove the global asymptotic stability of
NTFZNN model (7), the convergence time upper bound of NTFZNN
model (7) on solving time-varying Lyapunov equation will also be
computed.

Theorem 1. When solving time-varying Lyapunov Eq. (1), NTFZNN
model (12) is globally stable, meaning that the state solution of
NTFZNN globally converges to the accurate solution of (1).
Proof. The design formula of NTFZNN model (12) gives every ele-
ment of eðtÞ the same inherent dynamics, and thus we only need to
consider the ith element. This subsystem with 8i 2 f1;2;3; . . . ;n2g
can be written as:

_eiðtÞ ¼ �lW1ðeiðtÞÞ � nW2 eiðtÞ þ l
Z t

0
W1ðeiðsÞÞds

� �
; ð14Þ

whereW1ð�Þ : R ! R andW2ð�Þ : R ! R denote the elements ofA1ð�Þ
and A2ð�Þ respectively. We define a new variable giðtÞ to facilitate
the following analysis, and this variable is formulated as follows:

giðtÞ ¼ eiðtÞ þ l
Z t

0
W1ðeiðsÞÞds: ð15Þ

Then, the time derivative of giðtÞ (15) can be easily obtained:

_giðtÞ ¼ _eiðtÞ þ lW1ðeiðtÞÞ: ð16Þ
Therefore, substituting (15) and (16) into (14), one can get fol-

lowing simplified dynamics:

_giðtÞ ¼ �nW2ðgiðtÞÞ:
This formula is the same as the ordinary ZNN model (3), whose

properties have already been well studied. According to Lemma 2,
if the activation function W2ð�Þ is odd and monotonically increas-
ing, giðtÞ will converge to zero as the neural network evolves. Since
SBP (10) and SFAF (11) all satisfy the condition, NTFZNN model
about giðtÞ; 8i 2 f1;2; . . . ;n2g is globally stable.
Consider proving the global asymptotic stability of NTFZNN
about variable eiðtÞ, we define an auxiliary Lyapunov function for
the ith element of eðtÞ:

LiðtÞ ¼ 1
2
ke2i ðtÞ þ

1
2
g2
i ðtÞ;

where k > 0 is a parameter that particularly specified, and we

denote L0 ¼ Lið0Þ ¼ ke2i ð0Þ=2þ g2
i ð0Þ=2 with eið0Þ and gið0Þ being

the initial value of eiðtÞ and giðtÞ respectively. Clearly, L0 is a known
value because eið0Þ and gið0Þ are known. It also holds true that LiðtÞ
is positive-definite, because LiðtÞ > 0 for any eiðtÞ – 0 or giðtÞ– 0;
only when eiðtÞ ¼ giðtÞ ¼ 0 will LiðtÞ ¼ 0. Then, we calculate the
derivative of LiðtÞ about time, and the result is as follows:

dLiðtÞ
dt ¼ keiðtÞ _eiðtÞ þ giðtÞ _giðtÞ

¼ keiðtÞ _giðtÞ � lW1ðeiðtÞÞ½ � � ngiðtÞW2ðgiðtÞÞ
¼ �kneiðtÞW2ðgiðtÞÞ � kleiðtÞW1ðeiðtÞÞ
�ngiðtÞW2ðgiðtÞÞ:

ð17Þ

To prove the conclusion of Theorem 1, we are going to prove
that LiðtÞ 6 0 always holds true for t 2 ½0;þ1Þ. Firstly, suppose
there exists a time instant when LiðtÞ 6 L0, therefore following
equations can be obtained:

1
2
ke2i ðtÞ 6 L0 and

1
2
g2
i ðtÞ 6 L0:

The above inequalities are equivalent to

jeiðtÞj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2L0=k

q
and jgiðtÞj 6

ffiffiffiffiffiffiffiffi
2L0

p
:

Let Ve and Vg represent the domain of eiðtÞ and giðtÞ respec-
tively, and we obtain:

Ve ¼ eiðtÞ 2 R; jeiðtÞj 6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2L0=k

pn o
;

Vg ¼ giðtÞ 2 R; jgiðtÞj 6
ffiffiffiffiffiffiffiffi
2L0

p� �
:

For activation functionsW1ð�Þ andW2ð�Þwith continuous deriva-
tive, using the classic mean-value theorem within the domain
restricted by Vg , we get:

W2ðgiðtÞÞ �W2ð0Þ
giðtÞ � 0

¼ @W2ðgiðdÞÞ
@gi

jgiðdÞ2Vg
: ð18Þ

BecauseW2ð�Þ is an odd function,W2ð0Þ ¼ 0 holds true. Combin-
ing with the monotone increasing feature of W2ð�Þ, we obtain
@W2ðgiðtÞÞ=@gi > 0. Therefore, (18) leads to the following
inequality:

jW2ðgiðtÞÞj 6 C0jgiðtÞj;
where C0 ¼ maxf@W2ðgiðtÞÞ=@gigjgiðtÞ2Vg

> 0 is bounded since Vg is a

closed interval and that @W2ðgiðtÞÞ=@gi is continuous on this inter-
val. Therefore, we can obtain

jeiðtÞW2ðgiðtÞÞj 6 jeiðtÞj � jW2ðgiðtÞÞj
6 C0jeiðtÞj � jgiðtÞj:

ð19Þ

Similar to the derivation procedure of C0;C1 and C2 can be
accordingly obtained by applying the mean-value method:

jW1ðeiðtÞÞj P C1jeiðtÞj;
jW2ðgiðtÞÞj P C2jgiðtÞj;

ð20Þ

where C1 and C2 are defined as

C1 ¼ minf@W1ðeiðtÞÞ=@eigjeiðtÞ2Ve
> 0;

C2 ¼ minf@W2ðgiðtÞÞ=@gigjgiðtÞ2Vg
> 0:

Combining (17) with (19) and (20), the following inequality can
be derived:
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dLiðtÞ
dt ¼ �kneiðtÞW2ðgiðtÞÞ � kleiðtÞW1ðeiðtÞÞ

�ngiðtÞW2ðgiðtÞÞ
6 knjeiðtÞW2ðgiðtÞÞj � kleiðtÞW1ðeiðtÞÞ

�ngiðtÞW2ðgiðtÞÞ
6 knC0jeiðtÞj � jgiðtÞj � klC1e2i ðtÞ � nC2g2

i ðtÞ

¼ �k
ffiffiffiffiffiffiffiffiffi
lC1

p
eiðtÞ � nC0

2
ffiffiffiffiffiffi
lC1

p jgiðtÞj
� �2

�k nC2
k � n2C2

0
4lC1

� �
g2
i ðtÞ:

ð21Þ

According to the above conclusion of (21), we can guarantee
_LiðtÞ 6 0 when LiðtÞ 6 L0, provided that

nC2

k
� n2C2

0

4lC1
P 0 and k > 0 () 0 < k 6 4lC1C2

nC2
0

:

Obviously we can always find k that satisfies the above condi-
tion. Thus, _LiðtÞ 6 0 can be guaranteed when LiðtÞ 6 L0. Further-
more, for starting time instant t ¼ 0, Lið0Þ 6 L0 holds true
meaning _Lið0Þ 6 0. Then, we conclude that LiðtÞ will be kept in
½0; L0� all the time, i.e, _LiðtÞ 6 0, once k is set properly. Following
above process of proof, we have _LiðtÞ 6 0 for any time instant
t 2 ½0;þ1Þ.

The above analysis have proved the negative semi-definiteness
of _LiðtÞ. In addition, it follows from the inequality (21) that the
upper bound of _LiðtÞ equals to zero only when eiðtÞ ¼ giðtÞ ¼ 0,
meaning _LiðtÞ < 0 is true when eiðtÞ – 0 or giðtÞ– 0. Therefore, _LiðtÞ
is negative definite. According to the Lyapunov stability theory in
Lemma 1, we finally conclude that all subsystems of (12) are
globally stable. Therefore, the proof of Theorem 1 is now complete.

Before obtaining the convergence time upper bound of NTFZNN
model (7), we first come to analyze such upper bound of ordinary
ZNN model when using two finite-time activation functions SBP
(10) and SFAF (11).

Theorem 2. The error vector eðtÞ of the ordinary ZNN model (13) is
able to converge to zero in finite time with finite-time convergent
activation functions. When SBP (10) is used in Að�Þ, the convergence

time upper bound tf1 is tf1 6 2j.maxð0Þj1�p=ðlð1� pÞÞ. When SFAF
(11) is used in Að�Þ, the upper bound of convergence time is

tf2 ¼ 1
a2ð1� pÞ ln

a2j.maxð0Þj1�p þ a1

a1
;

where a1 ¼ lb1 > 0;a2 ¼ lb2 > 0, and .ðtÞ 2 Rn2 denotes the error
vector eðtÞ. In addition, .maxðtÞ is one element of .ðtÞ which has the
largest absolute initial error value, i.e, j.maxð0Þj ¼ maxfj.ið0Þj;
8i 2 1;2; . . . ; n2g.
Proof. Consider an auxiliary Lyapunov function candidate
uiðtÞ ¼ e2i ðtÞ for the ith subsystem of (13).

1) When SBP (10) is applied in Að�Þ, the proof of ZNN model
(13) about the convergence time upper bound

tf1 6 2j.maxð0Þj1�p=ðlð1� pÞÞ can be referred to [37].
2) Under the condition that the ordinary ZNN model applies

SFAF (11) in Að�Þ, for calculating the convergence time tf2,
we plug (11) into the .maxðtÞ subsystem of the original
design formula (13):
_.maxðtÞ ¼ �lðb1sgnpð.maxðtÞÞ þ b2.maxðtÞÞ
¼ �a1sgnpð.maxðtÞÞ � a2.maxðtÞ:

ð22Þ
Solving the above differential equation should be considered
under different conditions. First, when .maxð0Þ > 0, (22) leads
to the following equality:

_.maxðtÞ ¼ �a1ð.maxðtÞÞp � a2.maxðtÞ;
which is equivalent to a differential equation formed by

ð.maxðtÞÞ�p d.maxðtÞ
dt

þ a2ð.maxðtÞÞ1�p þ a1 ¼ 0:

Defining a auxiliary function hðtÞ ¼ ð.maxðtÞÞ1�p and substituting
it into above equation, it can be rewritten as

dhðtÞ
dt

þ ð1� pÞa2hðtÞ þ ð1� pÞa1 ¼ 0:

Solving the above differential equation, we have

hðtÞ ¼ a1

a2
þ hð0Þ

� �
� expðð1� pÞa2tÞ � a1

a2
;

Clearly .maxðtÞ will decrease to zero at t ¼ tf2. Hence, we have

hðtf2Þ ¼ ð.maxðtf2ÞÞ1�p ¼ 0. We set t ¼ tf2 in above equality, which
leads to

tf2 ¼ 1
a2ð1�pÞ ln

a2.maxð0Þ1�pþa1
a1

¼ 1
a2ð1�pÞ ln

a2 j.maxð0Þj1�pþa1
a1

:

Then, we consider the case when .maxð0Þ 6 0. Applying the same
method as in above analysis and we still get

tf2 ¼ 1
a2ð1� pÞ ln

a2j.maxð0Þj1�p þ a1

a1
:

Summarizing the conclusions of above two conditions, we can
conclude that the proof of Theorem 2 is complete.

From the proof of Theorem 1, we know that the NTFZNN model
(7) is built on top of the ordinary ZNN design formula (3). With
Theorem 2, the convergence time upper bound of NTFZNN model
(7) can now be analyzed.

Theorem 3. The design formula of NTFZNN model (12) is finite-time
convergent, and its convergence time upper bound is

tSBP 6
2ðlþ nÞ
lnð1� pÞ j.maxð0Þj1�p

;

when using SBP (10) in A1ð�Þ and A2ð�Þ, where the definition of
.maxð0Þ is the same as in Theorem 2. When SFAF activation function
is applied in A1ð�Þ and A2ð�Þ, the upper bound of convergence time is

tSFAF 6
lþ n

lnb2ð1� pÞ ln
b2j.maxð0Þj1�p þ b1

b1
;

where the definition of b1 and b2 are the same as in (11).
Proof. 1) Firstly, let us investigate the NTFZNNSBP model.
The dynamic formula of NTFZNN model (12) can be
reformulated into equation _gðtÞ ¼ �nA2ðgðtÞÞ, where gðtÞ ¼ eðtÞþ
l
R t
0 AðeðsÞÞds 2 Rn2 . Evidently this dynamic is identical with the

formula of the ordinary ZNN formula (13). Then according to the
conclusion of Theorem 2, gðtÞ should converge to zero in finite-
time t1 as

t1 6 2
nð1� pÞ j.maxð0Þj1�p

;

where .maxð0Þ ¼ maxfjgið0Þjg ¼ maxfjeið0Þjg; 8i 2 f1;2; . . . ;n2g.
After time period t1; gðtÞ stays at its equilibrium point, meaning
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_gðtÞ ¼ 0. The error vector then satisfies _eðtÞ ¼ �lA1ðeðtÞÞ. Again,
this equation is the same as the ordinary ZNN model (13). It is
known that for the NTFZNN model (12), the absolute value jeiðtÞj
is always decreasing until it reaches zero, thus
jeiðt1Þj 6 jeið0Þj; 8i 2 f1;2; . . . ; n2g holds true. According to the The-
orem 2, eðtÞ must converge to zero in time t2:

t2 6 2
lð1� pÞ j.maxð0Þj1�p

:

In summary, eðtÞ of NTFZNNSBP eventually converges to zero
after two time periods, whose time upper bound are t1 and t2
respectively. We can now conclude that the NTFZNNSBP model for
time-varying Lyapunov equation converges in finite time tSBP:

tSBP ¼ t1 þ t2 6 2ðlþ nÞ
lnð1� pÞ j.maxð0Þj1�p

:

The first part of Theorem 3 has been proved.
2) Considering the NTFZNNSFAF model, similar to the proof of

first part of Theorem 3, its convergence process can still be split
into two stages with the aid of auxiliary function gðtÞ ¼ eðtÞþ
l
R t
0 AðeðsÞÞds. Following Theorem 2, in first stage, we can derive

that gðtÞ converges to zero in finite time t3:

t3 ¼ 1
nb2ð1� pÞ ln

b2j.maxð0Þj1�p þ b1

b1
:

Then, in the second stage, eðtÞ will converge to zero in finite
time t4 as

t4 6 1
lb2ð1� pÞ ln

b2j.maxð0Þj1�p þ b1

b1
:

Finally, we come to a conclusion that NTFZNNSFAF is finite-time
convergent with convergence time upper bound being

tSFAF ¼ t3 þ t4 6 lþ n
lnb2ð1� pÞ ln

b2j.maxð0Þj1�p þ b1

b1
:

The proof of Theorem 3 is now complete.
4.2. Robustness analysis

In this subsection, we are going to investigate the noise sup-
pression ability of NTFZNNmodel (12). Consider an unknown addi-

tive noise DNðtÞ 2 Rn2 , which is added to the vector form of the
NTFZNN model, forming the following inherent dynamics:

_eðtÞ ¼ �lA1ðeðtÞÞ � nA2 eðtÞ þ l
Z t

0
A1ðeðsÞÞds

� �
þ DNðtÞ:

ð23Þ
To lay the basis for the following analysis in this subsection, the

above Eq. (23) is called the dynamics of the noise polluted NTFZNN
model.

Theorem 4. If the additive noise DNðtÞ is constant, then residual error
eðtÞ of the noise polluted NTFZNN model (23) globally converges to 0
with the neural network evolving.
Proof. Because the noise DNðtÞ is constant, we denote it by DN , and
the ith subsystem of (23) leads to

_eiðtÞ ¼ �lW1ðeiðtÞÞ � nW2 eiðtÞ þ l
Z t

0
W1ðeiðsÞÞds

� �
þ di; ð24Þ

where di is the ith element of DN . We introduce a auxiliary function
giðtÞ defined in (15). Substituting giðtÞ and (16) into (24) leads to
_giðtÞ ¼ �nW2ðgiðtÞÞ þ di:

The following Lyapunov function candidate is designed to
investigate the stability of (24):

v iðtÞ ¼ ðnW2ðgiðtÞÞ � diÞ2=2:
Since v iðtÞ P 0 and v iðtÞ ¼ 0 only when _giðtÞ ¼ 0;v iðtÞ is clearly

a positive definite function. We calculate its time derivative as

dv i
dt ¼ ðnW2ðgiðtÞÞ � diÞn @W2ðgiðtÞÞ

@gi
_giðtÞ

¼ �n @W2ðgiðtÞÞ
@gi

ðnW2ðgiðtÞÞ � diÞ2:
The conclusion of @W2ðgiðtÞÞ=@gi > 0 can be easily derived from

activation functions’ odd and monotone increasing property. Thus,
_v iðtÞ 6 0, and _v iðtÞ ¼ 0 if and only if nW2ðgiðtÞÞ � di ¼ 0, implying
that _v iðtÞ is negative definite. Now, we obtain that v iðtÞ always
converges to 0 according to Lemma 1. With v iðtÞ converging to
zero, nW2ðgiðtÞÞ � di converges to zero too, i.e,
limt!þ1 _giðtÞ ¼ �nW2ðgiðtÞÞ þ di ¼ 0.

Let us take _giðtÞ ¼ _eiðtÞ þ nW1ðeiðtÞÞ into account, since
limt!þ1 _giðtÞ ¼ 0, it will reduce to following equality with t ! þ1:

_eiðtÞ ¼ �nW1ðeiðtÞÞ:
The above equality is the same as ith subsystem of the ordinary

ZNNmodel (13). Obviously eiðtÞwill converge to zero with t ! þ1
according to the Lemma 2.

Finally, combining the above analyses together, we come into
conclusion that NTFZNN model (12) is globally stable even facing
with unknown constant additive noise. Theorem 4 has now been
proved.

Results of Theorem 4 have shown that polluted NTFZNN model
(23) can still converge to the accurate solution even with constant
additive noises, which is excellent noise resistance ability. How-
ever, time-varying unknown additive noises are more common
than specific noise and thus we will investigate them in the follow-
ing theorem.

Theorem 5. If the unknown time-varying additive noise DNðtÞ in the
disturbed NTFZNN model (23) is assumed to have continuous time
derivative and its time derivative is bounded at any time instant
t P 0. Then, the computation error keðtÞk2 of the disturbed NTFZNN

model (23) converges to the interval ½0;nj _dmaxðtÞj=ðlnqÞ� when

t ! þ1. Moreover, diðtÞ is the ith element of DNðtÞ with j _dmaxðtÞj
being the upper bound of j _diðtÞj;qi ¼ jW1ðeiðtÞÞj=jeiðtÞj P 1 and
q ¼ minfqiji 2 1;2; . . . ;n2g.
Proof. We consider an auxiliary function uiðtÞ ¼ g2
i ðtÞ=2 ¼

jgiðtÞj2=2 for the ith element of gðtÞ ¼ eðtÞ þ l
R t
0 AðeðsÞÞds, the

following dynamics can be easily obtained from ith subsystem of
(23):

_giðtÞ ¼ �nW2ðgiðtÞÞ þ diðtÞ: ð25Þ
Therefore, we take the time derivative of uiðtÞ as follows:

_uiðtÞ ¼ _giðtÞgiðtÞ ¼ ð�nW2ðgiðtÞÞ þ diðtÞÞgiðtÞ:
Considering that W2ðgiðtÞÞgiðtÞ P 0 holds true for any giðtÞ, we

have _uiðtÞ 6 0 when diðtÞgiðtÞ 6 0, meaning jgiðtÞj ¼
ffiffiffiffiffiffiffiffiffiffi
uiðtÞ

p
will

not increase. Particularly, in the case of diðtÞgiðtÞ 6 0 if jgiðtÞj– 0,
it yields from (25) that jgiðtÞj always decreases whenever
diðtÞ ¼ 0 or diðtÞ– 0. In other cases when diðtÞgiðtÞ > 0; jgiðtÞj may
increase, which leads to the decrease of j � nW2ðgiðtÞÞ þ diðtÞj. How-
ever, this decreasing process stops when �nW2ðgiðtÞÞ þ diðtÞ ¼ 0,
which makes _uiðtÞ ¼ 0 again. Thus, it is obvious that when
t ! þ1; jgiðtÞj is bounded by
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� jW�1
2 ðdiðtÞ=nÞj 6 jgiðtÞj 6 jW�1

2 ðdiðtÞ=nÞj;

where W�1
2 ð�Þ is the inverse function of W2ð�Þ. Because jW2ðxÞj P jxj,

i.e, jW�1
2 ðxÞj 6 jxj is true for the activation functions used in this

paper, the bound of jgiðtÞj can be reformulated as follows:

�jdiðtÞ=nj 6 jgiðtÞj 6 jdiðtÞ=nj;
�jdiðtÞ=nj 6 giðtÞ 6 jdiðtÞ=nj:

ð26Þ

We now come to prove that lW1ðeiðtÞÞ tends to fall into the
interval lW1ðeiðtÞÞ 2 ½�j _diðtÞj=n; j _diðtÞj=n� when t ! þ1. Supposing
there exists any time instant t1 > 0 such that giðt1Þ ¼ eiðt1Þþ
l
R t1
0 W1ðeiðsÞÞds ¼ S1 and lW1ðeiðt1ÞÞ R ½�j _diðt1Þj=n; j _diðt1Þj=n�.
Without loss of generality, we assume lW1ðeiðt1ÞÞ >

j _diðt1Þj=n > 0. If eiðtÞ, starting from eiðt1Þ, keeps lW1ðeiðtÞÞ >
j _diðtÞj=n in the following time period, then after time period t2 we

have giðt1 þ t2Þ ¼ eiðt1 þ t2Þ þ l
R t1þt2
0 W1ðeiðsÞÞds ¼ S2. Calculating

the difference between S1 and S2, we have

S2 � S1 ¼ ðeiðt1 þ t2Þ � eiðt1ÞÞ þ l
R t1þt2
0 W1ðeiðsÞÞds

�l R t1
0 W1ðeiðsÞÞds

¼ ðeiðt1 þ t2Þ � eiðt1ÞÞ þ l
R t1þt2
t1

W1ðeiðsÞÞds
P l

R t1þt2
t1

W1ðeiðsÞÞds� eiðt1Þ:

ð27Þ

Besides, from above analysis, we obtain

jdiðt1 þ t2Þ=nj � S1
¼ jdiðt1Þ=nþ ½diðt1 þ t2Þ=n� diðt1Þ=n�j � S1
6 jdiðt1Þ=nj þ jdiðt1 þ t2Þ=n� diðt1Þ=nj � S1
¼ jdiðt1Þ=nj þ j R t1þt2

t1
ð _diðsÞ=nÞdsj � S1

6 jdiðt1Þ=nj þ
R t1þt2
t1

j _diðsÞ=njds� S1:

ð28Þ

It follows from (27) and (28) that:

S2 � jdiðt1 þ t2Þ=nj P
R t1þt2
t1

ðlW1ðeiðsÞÞ � j _diðsÞ=njÞds
�ðjdiðt1Þ=nj þ eiðt1Þ þ S1Þ:

From previous assumption, lWiðeiðtÞÞ � j _diðtÞ=nj > 0 holds true
for t 2 ½t1; t1 þ t2� and jdiðt1Þ=nj þ eiðt1Þ þ S1 is an given infinite
value for any given t1. In addition, inequality (26) implies that
S2 ¼ giðt1 þ t2Þ 6 jdiðt1 þ t2Þ=nj. Therefore, we haveZ t1þt2

t1

ðlW1ðeiðsÞÞ � j _diðsÞ=njÞds 6 ðjdiðt1Þ=nj þ eiðt1Þ þ S1Þ: ð29Þ

It is worth pointing out that the left side of (29) is always
increasing with the increasing of time t2, while the right side of
(29) is a finite fixed value. Hence, when t2 ! þ1, we conclude that
limt!þ1ðlW1ðeiðtÞÞ � j _diðtÞ=njÞ ¼ 0, i.e, limt!þ1lW1ðeiðtÞÞ ¼
j _diðtÞ=nj. For the case when lW1ðeiðt1ÞÞ < �j _diðt1Þj=n < 0 and
lWiðeiðtÞÞ < �j _diðtÞj=n keeps true in the following time period, we
can obtain limt!þ1lW1ðeiðtÞÞ ¼ �j _diðtÞ=nj in a similar way.

Combining the above analysis results, even if there exists time
instant t such that lW1ðeiðtÞÞ R ½�j _diðtÞj=n; j _diðtÞj=n�, lW1ðeiðtÞÞ still
converge to interval ½�j _diðtÞj=n ; j _diðtÞj=n� when t ! þ1. This
conclusion shows that eiðtÞ converges to ½�j _diðtÞj=ðlnqiÞ; j _diðtÞj=
ðlnqiÞ� for t ! þ1. Furthermore, keðtÞk2 satisfies

0 6 keðtÞk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn2
i¼1

e2i ðtÞ
vuut 6 njemaxðtÞj;

where jemaxðtÞj has the largest value among
jeiðtÞj; 8i 2 f1;2; . . . ;n2g. Finally, we are able to conclude that the
computation error keðtÞk2 of perturbed NTFZNN model (23) con-
verges to interval ½0;nj _dmaxðtÞj=ðlnqÞ� with t ! þ1. Theorem 5
has now been proved.
Remark 1. As illustrated in Theorem 5, when facing with various
kinds of time-varying additive noises, the steady state error
keðtÞk2 of the perturbed NTFZNN model (23) is still bounded as
long as the noises have bounded time derivatives. Considering that
even if the additive noises do not satisfy such requirement, most of
them can be approximated by Fourier series which satisfy our
requirement. Therefore our conclusion in Theorem 5 actually has
shown NTFZNN model’s strong robustness against wide range of
additive noises.
5. Simulative verification and comparison

Theoretical analyses in previous sections have laid a solid theo-
retical foundation for the NTFZNN model. In this section, we
mainly focus on validating the convergence and noise suppress
abilities of the NTFZNN model when applied to time-varying Lya-
punov equation problem solving. Without loss of generality, the
coefficients in the time-varying Lyapunov problem (1) are selected
as the following form

MðtÞ ¼ �1� 1
2 cosð3tÞ 1

2 sinð3tÞ
1
2 sinð3tÞ �1þ 1

2 cosð3tÞ

" #
;

QðtÞ ¼ sinð3tÞ cosð3tÞ
� cosð3tÞ sinð3tÞ

	 

:

Because the coefficient matrix MðtÞ and QðtÞ are given, we can
calculate out the theoretical solution AðtÞ of Lyapunov Eq. (1),
and the ijth element AijðtÞ of matrix AðtÞ are written as follows:

A11ðtÞ ¼ � 1
3 sinð3tÞðcosð3tÞ � 2Þ;

A12ðtÞ ¼ � 1
6 ð2 cosð3tÞ � 1Þðcosð3tÞ þ 2Þ;

A21ðtÞ ¼ � 1
6 ð2 cosð3tÞ þ 1Þðcosð3tÞ � 2Þ;

A22ðtÞ ¼ 1
3 sinð3tÞðcosð3tÞ þ 2Þ;

where the correctness of AðtÞ can be validated by substituting it into
the problem (1). Therefore, we use AðtÞ to verify the model accuracy.

In the ideal environment without internal and external distur-
bance, both NTFZNNSBP and NTFZNNSFAF can converge to the accu-
rate solution of Lyapunov equation in finite time, which have been
proved in Theorem 3. For experimental purpose, in initial error
matrix Eð0Þ 2 R2�2, every element eijð0Þ 2 Eð0Þ is random generated
and is bounded by jeijð0Þj 2 ½0;2�. Other design parameters are
selected as l ¼ 2; n ¼ 1 in NTFZNN models, p ¼ 0:4 in wSFAFð�Þ
and wSBPð�Þ activation functions, b1 ¼ b2 ¼ 1 in wSFAFð�Þ. Fig. 1 shows
that, the residual error kMTðtÞXðtÞ þ XðtÞMðtÞ þ QðtÞkF ¼ keðtÞk2 of
two NTFZNN models starting from the same original state con-
verges to zero quickly and in finite time. It is worth mentioning
that we can calculate the convergence time upper bound of these
NTFZNN models according to the Theorem 3, which is derived as
follows:

tSBP 6 2ð2þ1Þ
2ð1�0:4Þ2

ð1�0:4Þ 6 7:58 s;

tSFAF 6 2þ1
2ð1�0:4Þ ln

2ð1�0:4Þþ1
1 6 2:31 s;

where tSBP, and tSFAF are theoretical upper bound of convergence
time of NTFZNNSBP and NTFZNNSFAF, respectively. It can be seen in
Fig. 1 that keðtÞk2 of these models takes about 3.5 s and 2.3 s to
reach zero, which obviously satisfies the conclusion. What’s more,
Fig. 2 illustrates the output transients of the NTFZNNSFAF model,
where the red doted line denotes theoretical solution and the blue



Fig. 1. Trajectory of residual error kMT ðtÞXðtÞ þ XðtÞMðtÞ þ QðtÞkF synthesized by
NTFZNN model (7) when using SFAF (blue solid line) and SBP (red doted line)
activation functions. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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solid line represents the neural network solution. Clearly, the
NTFZNNSFAF model tracks the accurate solution quickly and pre-
cisely. Besides, the performance of NTFZNNSBP is similar and is thus
omitted.

Next, we come to examine the performance of the perturbed
NTFZNN model (23). This time we choose wSFAFð�Þ as the activation
function used in W1ð�Þ and W2ð�Þ because its performance is better.
We have also conducted simulations using the ordinary ZNNmodel
Fig. 2. Elements of neural state XðtÞ synthesized by NTF
(4) and the NTZNN model (9) as contrast group, where Að�Þ in the
ZNN model uses wSFAFð�Þ too. Other parameters are set to be
p ¼ 0:4; l ¼ 3; n ¼ 2 and b1 ¼ b2 ¼ 1. When facing with constant
noise diðtÞ ¼ 2, the residual error trajectories of neural network
models are depicted in Fig. 3, which shows that the residual errors
keðtÞk2 of the NTFZNN and NTZNN models decrease to zero with
time, while the ordinary ZNN model’s stays at a very large level.
These facts imply the NTFZNN and NTZNN models can converge
to the theoretical solution but the ordinary ZNN model can not.
This phenomenon also verifies the conclusion of Theorem 4. In
order to demonstrate the superior noise toleration ability of the
NTFZNN model, we set the additive noise to be linear type
diðtÞ ¼ 2t, the design parameter are set to be l ¼ 5; n ¼ 2 accord-
ingly, and the simulative results are shown in Fig. 4. As demon-
strated in Fig. 4, even under such huge perturbation, the NTFZNN
model still maintains its effectiveness with very small stable resid-
ual error keðtÞk2 near zero, while the stable residual error of the
NTZNN model is about 2 and the ordinary ZNN model with even
larger increasing error. Furthermore, the convergence speed of
the NTFZNN model is much faster than the NTZNN model in both
Fig. 3 and Fig. 4, because the latter one is lack of nonlinear activa-
tion functions.

Theorem 5 illustrates that in the face of unknown nonstationary
additive noise, the stable residual error keðtÞk2 of the NTFZNN
model is bounded and predictable given that the noise’s time
derivative is bounded. This conclusion shows the superiority of
the NTFZNN model under noise polluted condition, and thus we
have designed two simulative experiments to verify Theorem 5.
Note that in these two experiments, we use f ðxÞ ¼ x as activation
function in W1ð�Þ and W2ð�Þ for analyze convenience, i.e., q ¼ 1.
Firstly, design parameters are set as l ¼ 2; n ¼ 1 and the noise
diðtÞ changes from 0:5t; t to 2t, thus the steady-state residual error
upper bound changes from 2, 1 to 0.5 in Theorem 5, which matches
ZNN model (7) using SFAF (11) activation function.



Fig. 3. Computing time-varying Lyapunov equation problem in the presence of
additive constant noise diðtÞ ¼ 2, using the NTFZNN model (blue solid line), the
NTZNN model (green doted line) and the ordinary ZNN model (red doted line). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 4. Computing time-varying Lyapunov equation problem facing additive
increasing noise diðtÞ ¼ 2t, using NTFZNN model (blue solid line), NTZNN model
(green doted line) and the ordinary ZNN model (red doted line). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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the results shown in Fig. 5(a) perfectly. In the second experiment,
diðtÞ is fixed to be 2t while design parameters are set as
l ¼ 2; n ¼ 1;l ¼ 4; n ¼ 1 to l ¼ 4; n ¼ 2. As depicted in Fig. 5
(b), the stable keðtÞk2 changes from about 1, 0.5 to 0.25, validating
the Theorem 5 again. Obviously, the robustness of the NTFZNN
model is excellent. Moreover, the convergence speed and noise
suppression ability can be improved through increasing l; n and
adopting better nonlinear activation functions.
6. Application to perturbed mobile manipulator control

In the previous section, we have used NTFZNN model (7) to
solve the nonstationary Lyapunov equation problem and we only
solve a slightly simple Lyapunov equation for concise demonstra-
tion. However, to validate the efficacy of our proposed NTFZNN
model on applying to the real-world task, we introduce a mobile
manipulator to test it as in [13,38,39]. The robot manipulator is a
wheeled mobile manipulator, whose model and mechanical struc-
ture can be seen in [40]. Furthermore, one can learn from [40] that
the kinematics model of this robot manipulator can be formulated
as following equation:

rðtÞ ¼ yðHðtÞÞ 2 Rk;

where HðtÞ ¼ ½/TðtÞ; hTðtÞ�T 2 Rnþ2 represents the angle vector that

consists of the mobile platform angle vector /ðtÞ ¼ ½/LðtÞ;/RðtÞ�T
and the manipulator angle vector hðtÞ ¼ ½h1ðtÞ; . . . ; hnðtÞ�T . Besides,
rðtÞ ¼ ½rxðtÞ; ryðtÞ; rzðtÞ�T denotes the position of end-effector in
Cartesian space, and yð�Þ denotes a smooth function mapping HðtÞ
to rðtÞ in nonlinear behavior.

Following the inverse kinematic control method and the
NTFZNN model, the dynamic equation used to accomplish the
tracking control task of this mobile manipulator can be obtained as

JðHðtÞÞ _HðtÞ ¼ _rðtÞ � lW1ðeðtÞÞ � nW2 eðtÞ þ l
Z s

0
eðsÞds

� �
;

where JðHðtÞÞ ¼ @yðHðtÞÞ=@H 2 Rm�ðnþ2Þ; eðtÞ ¼ rðtÞ � yðHðtÞÞ is the
error vector of end-effector position. Considering that the most
important advantage of the NTFZNN model is its ability to work
reliably even under large noise condition, we inject an increasing
noise dðtÞ ¼ 2t to above dynamics:

JðHðtÞÞ _HðtÞ ¼ _rðtÞ � lW1ðeðtÞÞ � nW2 eðtÞ þ l
R s
0 eðsÞds� �þ dðtÞ:

ð30Þ
In the simulation, we set l ¼ 100; n ¼ 5; Hð0Þ ¼

½0;0;p=3;p=12;p=12;p=12;p=12;p=12�. The tracking duration is
10 s and the activation function we use is SFAF (11) with p ¼ 0:5
and b1 ¼ b2 ¼ 1. Under this condition, we use the perturbed
manipulator control dynamic (30) to track a Four-leaf clover shape
path and the results are shown in Figs. 6 and 7(a). Fig. 6 illustrates
the whole tracking process of mobile manipulator controlled by
model (30), where Fig. 6(a) plots in 3D view angle and Fig. 6(b)
plots top graph of the process. Evidently, although under large lin-
ear noise, the model accomplish the tracking task well, this can be
further verified in Fig. 7(a) which depicts the desired path and
actual end-effector trajectory. Particularly, in Fig. 7(a), we find that
the position error of the path is about the level of 10�5m on all
three axises under such large noise perturbation.

It has been demonstrated in Fig. 4 that the NTFZNN model (12)
outperforms the ordinary ZNN model (13) and the NTZNN model
(9) when facing time-varying additive noises. Therefore, it is neces-
sary to verify whether the NTFZNN model (12) still outperforms
above other two models in the perturbed robotic tracking task.
Similar to constructing the perturbed NTFZNN model based robot
control model (30), we have the perturbed NTZNN model based

robot control model as JðHðtÞÞ _HðtÞ ¼ _rðtÞ � leðtÞ � n
R t
0 eðsÞdsþ

dðtÞ and the perturbed ordinary ZNN model based robot control

model as JðHðtÞÞ _HðtÞ ¼ _rðtÞ � lW1ðeðtÞÞ þ dðtÞ. Then in above three
robot control models, all activation functions W1ð�Þ;W2ð�Þ are set to
be SFAF (11) while other parameters are set as diðtÞ ¼ 2 � t�
sinðtÞ; p ¼ 0:5; b1 ¼ b2 ¼ 1; n ¼ 1 and l ¼ 10;11; . . . ;20. With
above settings and starting from the same initial condition Hð0Þ,
the three perturbed robot control model are used to track a desired
path which is the same as in above experiment. Note that the Max-
imum Steady State Position Error (MSSPE) as a new evaluation
index is adopted in the simulation results of Fig. 8. Besides, the
MSSPE is defined as maxferrpðtÞg;8t 2 ½7;10�s. From Fig. 8, evi-



Fig. 5. Residual error kMT ðtÞXðtÞ þ XðtÞMðtÞ þ QðtÞkF generated by perturbed NTFZNN model (23). (a) Under different additive noise diðtÞ ¼ 0:5t (blue solid line), diðtÞ ¼ t (red
doted line) and diðtÞ ¼ 2t. (b) Using different design parameters l and n. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Results of tracking Four-leaf clover path using the perturbed NTFZNNmodel (30) controlled the mobile manipulator. (a) Complete tracking movement process. (b) Top
view of according tracking trajectories.

Fig. 7. Profiles produced by the perturbed NTFZNN model (30) controlled mobile manipulator during tracking task. (a) Desired path (red solid line) and actual path (green
dots). (b) Tracking position level error along three axises and as a whole in Cartesian space.
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Fig. 8. MSSPE trajectories of three perturbed robot manipulator control models
which are based on the NTFZNN, NTZNN or ZNN models during tracking tasks and
with different l.
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dently, the perturbed NTFZNN model based robot control model’s
MSSPEs are always more than 100 times smaller than that of other
two perturbed robot control models, which shows that the
NTFZNN model works much better than the NTZNN model (9)
and the ordinary ZNN model (13) in perturbed robot manipulator
control.

In summary, the above simulation results have shown that the
NTFZNN based robot control model (30) can handle the mobile
manipulator tracking task well in heavily perturbed environment.
7. Conclusion

In order to accelerate the convergence speed to finite time as
well as to perform reliably even when there exists various types
of internal and external noise, a novel Noise-Tolerance Finite-
time convergent ZNN (NTFZNN) model is established to deal with
the time-varying Lyapunov equation. Equipped with two finite-
time convergent activation functions, the advanced properties of
the NTFZNN model are firstly proved theoretically. Numerical sim-
ulative experiments have validated that NTFZNN is able to con-
verge to the accurate solution of time-varying Lyapunov
equations. It has also been proved and validated by numerical sim-
ulations that when the additive noise has bounded time derivative,
the stable residual error of perturbed NTFZNN is bounded and can
be computed out. Furthermore, the design method of NTFZNN is
adopted to control a wheeled mobile manipulator under increasing
additive noise in real-time, which successfully tracks the desired
path with high accuracy. Future work can be finding ways to fur-
ther enhance convergence speed of the NTFZNNmodel. Transform-
ing the NTFZNNmodel into discrete model and exploiting it to deal
with more practical applications also worth in-depth research.
CRediT authorship contribution statement

Zeshan Hu: Data curation, Writing - original draft,
Visualization. Kenli Li: Supervision, Validation. Keqin Li: Supervi-
sion, Validation. Jichun Li: Writing - review & editing.
Lin Xiao: Conceptualization, Methodology, Supervision,
Investigation, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

This work was supported by the National Key Research and
Development Program of China (Grant No. 2016YFB0201800);
the National Natural Science Foundation of China under grants
61866013, 61503152, 61976089, 61473259, and 61563017; the
Natural Science Foundation of Hunan Province of China under
grants 2019JJ50478, 18A289, JGY201926, 2016JJ2101,
2018TP1018, and 2018RS3065.
References

[1] I. Mutlu, F. Schrödel, N. Bajcinca, D. Abel, M.T. Söylemez, Lyapunov equation
based stability mapping approach: A MIMO case study, IFAC-PapersOnLine 49
(9) (2016) 130–135.

[2] P. Benner, Solving large-scale control problems, IEEE Control Syst. Mag. 24 (1)
(2004) 44–59.

[3] Y. Qian, W. Pang, An implicit sequential algorithm for solving coupled
Lyapunov equations of continuous-time Markovian jump systems,
Automatica 60 (2015) 245–250.

[4] B. Zhou, G. Duan, Z. Lin, A parametric periodic Lyapunov equation with
application in semi-global stabilization of discrete-time periodic systems
subject to actuator saturation, Automatica 47 (2) (2011) 316–325.

[5] L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, L. Jin, Design and analysis of FTZNN
applied to the real-time solution of a nonstationary Lyapunov equation and
tracking control of a wheeled mobile manipulator, IEEE Trans. Ind. Inform. 14
(1) (2018) 98–105.

[6] Z. Li, B. Zhou, J. Lam, Y. Wang, Positive operator based iterative algorithms for
solving Lyapunov equations for Itô stochastic systems with Markovian jumps,
Appl. Math. Comput. 217 (21) (2011) 8179–8195.

[7] F. Ding, H. Zhang, Gradient-based iterative algorithm for a class of the coupled
matrix equations related to control systems, IET Control Theory Appl. 8 (15)
(2014) 1588–1595.

[8] Y. Lin, V. Simoncini, Minimal residual methods for large scale Lyapunov
equations, Appl. Numer. Math. 72 (2013) 52–71.

[9] L. Jin, S. Li, B. Hu, RNN models for dynamic matrix inversion: A control-
theoretical perspective, IEEE Trans. Ind. Inform. 14 (1) (2017) 189–199.

[10] Y. Zhang, Y. Yang, G. Ruan, Performance analysis of gradient neural network
exploited for online time-varying quadratic minimization and equality-
constrained quadratic programming, Neurocomputing 74 (10) (2011) 1710–
1719.

[11] D. Guo, C. Yi, Y. Zhang, Zhang neural network versus gradient-based neural
network for time-varying linear matrix equation solving, Neurocomputing 74
(17) (2011) 3708–3712.
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