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Abstract
Accurate traffic prediction is critical for ensur-

ing the efficient operation of mobile networks 
and maintaining a seamless user experience. 
However, existing approaches face several sig-
nificant challenges: high costs and incomplete 
environmental perception, difficulty capturing 
spatial correlations between base stations, and 
limited adaptability to irregular traffic fluctuations 
driven by user activities. This article proposes an 
LLM-enhanced Conditional Diffusion (LEC-Diff) 
model for cellular traffic prediction to address the 
abovementioned challenges. First, we utilize eas-
ily accessible aerial images to describe the static 
environmental context surrounding base stations. 
We further enhance this representation by lever-
aging comprehensive textual data from a Large 
Language Model (LLM) for these images, extract-
ing the abundant inherent knowledge embedded 
within the LLM. Second, we employ a Graph 
Neural Network (GNN) to automatically model 
the spatial dependencies between base stations 
and enhance spatiotemporal information through 
mapping. Finally, we introduce a conditional diffu-
sion model to capture complex traffic distributions 
by conditioning predictions on static environmen-
tal features and dynamic historical traffic features. 
Extensive experiments demonstrate that our pro-
posed model surpasses state-of-the-art methods 
by over 5% in mobile traffic prediction.

Introduction
With the rapid evolution of wireless communi-
cations, diversified services such as short videos 
and live broadcasts have significantly accelerated 
mobile traffic growth. Rapidly developing these 
emerging mobile services has introduced signif-
icant challenges to cellular networks, including 
increasing pressure on network resources and 
issues like congestion and delays [1]. To over-
come these challenges and deliver high-quality 
network services, accurate traffic prediction has 
become a critical capability for operators and 
infrastructure providers, enabling the optimiza-
tion of resource allocation and proactive network 
control, ensuring the growing demand for reliable 
and efficient connectivity is met [2].

Numerous studies have sought to enhance 
the accuracy of mobile traffic prediction. Initial-

ly, researchers approached traffic prediction as 
a general time-series forecasting problem, using 
Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) networks [3] to 
capture the temporal dependencies of traffic at 
individual base stations. These purely temporal 
models fail to consider the spatial correlations 
between base stations. Thus, several studies have 
incorporated Graph Neural Networks (GNNs) 
into their frameworks, leveraging graph structures 
to model the spatial distributions of base stations. 
For example, Yu et al. [4] proposed an innovative 
architecture integrating the Graph Convolution-
al Network (GCN) with the gated Convolutional 
Neural Network (CNN). By extracting the topolog-
ical structure of the graph network, the dynamic 
characteristics of mobile traffic are comprehen-
sively analyzed, thereby effectively uncovering 
spatiotemporal variations in mobile traffic data. 
Beyond spatial and temporal dependencies, the 
contextual environmental information of base 
stations is also a critical factor in mobile traffic 
prediction. Gong et al. [5] were among the first 
to integrate environmental information into their 
models. Specifically, they constructed an urban 
knowledge graph to represent the spatial structure 
of a city and applied knowledge graph embed-
ding techniques to capture environmental factors. 
However, building an urban knowledge graph for 
each city is not only time-intensive and labor-in-
tensive but also requires access to sensitive data, 
such as citizens’ trajectories, which raises privacy 
concerns. These issues severely limit the practi-
cality of this approach in large-scale, real-world 
applications. Furthermore, most existing methods 
rely on deterministic predictions, which constrain 
their ability to model the distribution of traffic. 
As a result, these methods struggle to adapt to 
sudden traffic fluctuations caused by unexpected 
events. These limitations underscore the need for 
more robust and flexible tools to improve the per-
formance of mobile traffic prediction, particularly 
in dynamic and complex environments.

In recent years, generative AI has achieved 
remarkable performance in domains such as image 
generation and Natural Language Processing (NLP) 
thanks to its high-quality generative capabilities, 
flexibility, and scalability [6]. Furthermore, gener-
ative AI models, such as diffusion models, excel 

Zhu Xiao, Rui Wang, Jing Bai, Tong Li, Shiyuan Zhang, Keqin Li, and Zhu Han

Zhu Xiao, Rui Wang, and Tong Li (corresponding author) are with Hunan University, China; Jing Bai is with Xidian University, China; 
Shiyuan Zhang is with Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, China; Keqin Li is 

with State University of New York, New Paltz, USA; Zhu Han is with the University of Houston, USA and Kyung Hee University, South Korea.Digital Object Identifier: 10.1109/MCOM.001.2400779

An LLM-Enhanced Conditional Diffusion 
Model for Mobile Traffic Prediction

GENERATIVE FOUNDATION MODELS FOR COMMUNICATIONS

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 01:59:10 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Communications Magazine • September 2025 61

at effectively modeling underlying probability dis-
tributions and dependencies in data, showcasing 
their potential for time series prediction tasks that 
involve nonlinearity and non-stationarity [7]. Alter-
natively, Large Language Models (LLMs), as gener-
ative AI-based foundational models, are trained on 
vast corpora of natural language data [8, 9]. They 
have significant potential for leveraging the rich 
textual knowledge embedded in their vast training 
data to extract environmental features in urban 
settings, eliminating the need to construct urban 
knowledge graphs manually.

Despite the efforts, several challenging issues 
remain unresolved in the aforementioned works. 
•	 Environmental Feature Extraction for Base 

Stations. Mobile users in similar environ-
ments exhibit similar network usage behav-
iors, leading to corresponding base stations 
sharing similar traffic patterns. This makes 
environmental contextual information crit-
ical and valuable for cellular traffic predic-
tion [10, 11]. Existing studies have initially 
employed point-of-interest (POI) distributions 
to describe surrounding environments. POI 
data indicate locations of particular interest 
for specific purposes. However, such data 
are often inaccessible to operators and 
researchers as internet companies typically 
control them. Furthermore, POI datasets are 
not frequently updated, with updates often 
occurring over several years. Additionally, 
POI data provide only a limited view of the 
environment, neglecting rich regional tex-
tural features and urban structures such 
as building distributions and road layouts. 
Furthermore, some researchers have pro-
posed building urban knowledge graphs to 
represent urban regional structures. In such 
graphs, elements like regions, business areas, 
and transportation hubs are represented as 
elements, with user behavior data used to 
establish relationships between these ele-
ments. However, constructing urban knowl-
edge graphs is both time-consuming and 
labor-intensive. For new cities, this process 
requires manual data collection and graph 
construction, making it impractical in many 
scenarios. In summary, the effective and 
efficient extraction of environmental infor-
mation remains a significant and unresolved 
challenge for cellular traffic prediction.

•	 Traffic Uncertainty Fluctuations. Mobile traf-
fic is highly volatile, as it is influenced not 
only by spatiotemporal characteristics but 
also by numerous discrete potential factors. 

For instance, regional gatherings triggered 
by special events can cause sudden traffic 
surges. Traditional deterministic prediction 
methods often produce significant predic-
tion errors in such cases [12]. In addition, 
abnormal traffic fluctuations caused by such 
behaviors in historical traffic data hinder 
model development, preventing the model 
from effectively capturing general patterns 
and reducing its overall accuracy.
In this article, we propose an LLM-Enhanced 

Conditional Diffusion model (LEC-Diff) for mobile 
traffic prediction. Figure 1 illustrates the framework 
of LEC-Diff, composed of three key modules, i.e., 
the LLM-enhanced environment feature extraction 
module, the spatiotemporal graph fusion module, 
and the conditional diffusion prediction module. In 
the LLM-enhanced environment feature extraction 
module, we leverage readily available aerial imag-
es, i.e., satellite images, to capture the urban 
environmental context surrounding base stations. 
Additionally, we harness the rich textual knowl-
edge embedded in pre-trained LLMs to generate 
detailed textual descriptions for each aerial image, 
thereby enriching the contextual information. This 
process yields image-text pairs, which we utilize 
in a contrastive language-image pretraining [13] 
approach to integrate multimodal features effec-
tively. This integration enables a more accurate and 
insightful understanding of environmental contexts. 
The spatiotemporal graph fusion module extracts 
spatiotemporal information by jointly modeling 
RNNs and GNNs. The GNN uses a graph struc-
ture to represent the spatial relationships among 
base stations, where nodes correspond to base sta-
tions and edges represent the distances between 
them. The environmental features extracted by the 
LLM-enhanced environmental feature extraction 
module are incorporated as the spatial features 
of the nodes. Simultaneously, the historical traffic 
time series of the base stations are processed by 
the RNN to generate the temporal features of the 
nodes. The GNN then fuses these node features 
through aggregation and propagation operations, 
providing a more comprehensive and accurate 
representation of spatiotemporal dependencies 
within the cellular network. Finally, in the condi-
tional diffusion prediction module, the spatiotem-
poral enhancement information obtained from the 
spatiotemporal graph fusion module is used as a 
condition for the diffusion model. Through a Mar-
kov chain with Langevin sampling, white noise is 
progressively transformed into future traffic distri-
bution samples under the guidance of conditional 
information, enabling accurate traffic predictions.

FIGURE 1. Overview of LEC-Diff. The Environmental Feature Extraction Module is responsible for extracting environmental features of base stations using image-
text pairs. The Spatiotemporal Graph Fusion Module integrates environmental features with historical traffic temporal features across base stations by 
jointly modeling them through RNNs and GNNs. Finally, the Conditional Diffusion Prediction Module models future traffic distribution samples conditioned 
on the fused spatiotemporal features of each individual base station.
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Fig. 1. Overview of LEC-Diff. The Environmental Feature Extraction Module is responsible for extracting environmental features of base stations using
image-text pairs. The Spatiotemporal Graph Fusion Module integrates environmental features with historical traffic temporal features across base stations by
jointly modeling them through RNNs and GNNs. Finally, the Conditional Diffusion Prediction Module models future traffic distribution samples conditioned
on the fused spatiotemporal features of each individual base station.

to construct urban knowledge graphs manually.

Despite the efforts, several challenging issues remain un-
resolved in the aforementioned works. i) Environmental
Feature Extraction for Base Stations. Mobile users in
similar environments exhibit similar network usage behaviors,
leading to corresponding base stations sharing similar traffic
patterns. This makes environmental contextual information
critical and valuable for cellular traffic prediction [10], [11].
Existing studies have initially employed point-of-interest (POI)
distributions to describe surrounding environments. POI data
indicate locations of particular interest for specific purposes.
However, such data are often inaccessible to operators and
researchers as internet companies typically control them.
Furthermore, POI datasets are not frequently updated, with
updates often occurring over several years. Additionally, POI
data provide only a limited view of the environment, ne-
glecting rich regional textural features and urban structures
such as building distributions and road layouts. Furthermore,
some researchers have proposed building urban knowledge
graphs to represent urban regional structures. In such graphs,
elements like regions, business areas, and transportation hubs
are represented as elements, with user behavior data used
to establish relationships between these elements. However,
constructing urban knowledge graphs is both time-consuming
and labor-intensive. For new cities, this process requires
manual data collection and graph construction, making it
impractical in many scenarios. In summary, the effective and
efficient extraction of environmental information remains a
significant and unresolved challenge for cellular traffic pre-
diction. ii) Traffic Uncertainty Fluctuations. Mobile traffic
is highly volatile, as it is influenced not only by spatiotemporal
characteristics but also by numerous discrete potential factors.
For instance, regional gatherings triggered by special events
can cause sudden traffic surges. Traditional deterministic pre-
diction methods often produce significant prediction errors
in such cases [12]. In addition, abnormal traffic fluctuations
caused by such behaviors in historical traffic data hinder model
development, preventing the model from effectively capturing
general patterns and reducing its overall accuracy.

In this paper, we propose an LLM-Enhanced Conditional
Diffusion model (LEC-Diff) for mobile traffic prediction.
Fig. 1 illustrates the framework of LEC-Diff, composed

of three key modules, i.e., the LLM-enhanced environment
feature extraction module, the spatiotemporal graph fusion
module, and the conditional diffusion prediction module. In
the LLM-enhanced environment feature extraction module, we
leverage readily available aerial images, i.e., satellite images,
to capture the urban environmental context surrounding base
stations. Additionally, we harness the rich textual knowledge
embedded in pre-trained LLMs to generate detailed textual
descriptions for each aerial image, thereby enriching the
contextual information. This process yields image-text pairs,
which we utilize in a contrastive language-image pretrain-
ing [13] approach to integrate multimodal features effectively.
This integration enables a more accurate and insightful un-
derstanding of environmental contexts. The spatiotemporal
graph fusion module extracts spatiotemporal information by
jointly modeling RNNs and GNNs. The GNN uses a graph
structure to represent the spatial relationships among base
stations, where nodes correspond to base stations and edges
represent the distances between them. The environmental
features extracted by the LLM-enhanced environmental feature
extraction module are incorporated as the spatial features of
the nodes. Simultaneously, the historical traffic time series of
the base stations are processed by the RNN to generate the
temporal features of the nodes. The GNN then fuses these
node features through aggregation and propagation operations,
providing a more comprehensive and accurate representation
of spatiotemporal dependencies within the cellular network.
Finally, in the conditional diffusion prediction module, the
spatiotemporal enhancement information obtained from the
spatiotemporal graph fusion module is used as a condition for
the diffusion model. Through a Markov chain with Langevin
sampling, white noise is progressively transformed into future
traffic distribution samples under the guidance of conditional
information, enabling accurate traffic predictions.

Our contributions are summarized as follows.

• We propose a generative AI-driven paradigm for mobile
traffic prediction. The comprehensive text data generated
by LLM is a critical supplement, aiding in the efficient
and high-quality characterization of the spatial envi-
ronment surrounding the base station. The conditional
diffusion model can generate probability distribution pre-
dictions based on this enhanced spatial information and

The GNN then fuses these 
node features through 

aggregation and propaga-
tion operations, providing 

a more comprehensive and 
accurate representation 

of spatiotemporal depen-
dencies within the cellular 

network. 
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Our contributions are summarized as follows.
•	 We propose a generative AI-driven paradigm 

for mobile traffic prediction. The compre-
hensive text data generated by LLM is a crit-
ical supplement, aiding in the efficient and 
high-quality characterization of the spatial 
environment surrounding the base station. 
The conditional diffusion model can gener-
ate probability distribution predictions based 
on this enhanced spatial information and 
demonstrates greater robustness in adapting 
to uncertainties and dynamic variations in 
the cellular network environment.

•	 We propose a novel LEC-Diff model to 
enhance mobile traffic prediction. Specifi-
cally, the GNN effectively captures diverse 
relationships among base stations, envi-
ronmental features, and inter-base station 
connections by utilizing context information 
enhanced by the LLM. This enriched spatial 
context information is integrated with tem-
poral features in an autoregressive model, 
providing accurate spatiotemporal guidance 
for the diffusion model to generate future 
traffic distributions.

•	 We conduct extensive experiments on two 
real-world datasets. The results reveal that the 
proposed model achieved about 5% higher 
accuracy than the baselines, highlighting its 
superior accuracy and effectiveness. Further-
more, we analyze the roles of the modules 
within the network structure to confirm that 
the proposed method enhances the environ-
mental perception and understanding capabil-
ities for base station traffic prediction.

Solution
LEC-Diff comprises three key modules:
1. The environmental feature extraction mod-

ule, which utilizes an LLM to analyze satel-
lite images and extract spatial environmental 
information for base stations;

2. The spatiotemporal graph fusion engine, 
designed to capture the spatial distribution 
of base stations while integrating environ-
mental and temporal latent information 
across spatiotemporal dimensions;

3. The autoregressive denoising diffusion traf-
fic prediction engine, which employs an 

autoregressive diffusion model to generate 
accurate traffic predictions based on spatio-
temporal information.

Environmental Feature Extraction Module
Given the complexity of factors affecting predic-
tion, predicting the traffic of the base station is 
challenging if the environment in which the base 
station is located cannot be deeply analyzed. 
To better capture environmental information, 
as shown in Fig. 2a, we design the environmen-
tal feature extraction module. Specifically, we 
leverage the LLM to enhance the analysis of the 
environment around the base station and derive 
improved representations of base station envi-
ronmental information through language-image 
comparison pre-training. As demonstrated in Fig. 
3, empirical experiments with varying language 
instructions revealed that more detailed prompts 
— particularly those emphasizing specific aspects, 
such as urban infrastructure — can elicit the LLM’s 
enhanced capability to generate high-quality sum-
maries. Furthermore, given the well-documented 
hallucination issue, environmental descriptions 
generated by LLM frequently exhibit unrealistic or 
ambiguous information, which hinders the effec-
tive integration of LLM-based knowledge into the 
image encoder. To thoroughly enhance and pro-
duce high-quality environmental representations, 
it is essential to refine or rewrite textual content 
following established rules. Thus, we initially apply 
pre-configured regular filters to remove redun-
dant and irrelevant textual information. Addition-
ally, we integrate geographical and computational 
expertise to conduct secondary fact verification 
and devise a dual scoring mechanism to ensure 
the accuracy of this process.

The preprocessed images and texts are con-
verted into slices using Pathify and Tokenize. After 
linear mapping, a unique token ([CLS]) is added 
at the beginning of the sequence to represent its 
overall information. The image and text data are 
then input into two unimodal encoders to encode 
the data into latent image and text representa-
tions. The LLM-enhanced semantic representa-
tion and the visual representation of the exact 
base station location are optimized to be as sim-
ilar as possible. However, the inconsistent modal 
learning methods and the relationships between 

FIGURE 2. Architecture of LEC-Diff. The Environmental Feature Extraction Module leverages LLM to improve environmental perception and generate a com-
prehensive text modality, while the constructed image-text data pairs are aligned using CLIP. The conditional diffusion prediction module employs the 
diffusion model to predict future mobile traffic distributions using spatiotemporal conditions provided by the graph fusion module.
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Fig. 2. Architecture of LEC-Diff. The Environmental Feature Extraction Module leverages LLM to improve environmental perception and generate a
comprehensive text modality, while the constructed image-text data pairs are aligned using CLIP. The conditional diffusion prediction module employs the
diffusion model to predict future mobile traffic distributions using spatiotemporal conditions provided by the graph fusion module.

demonstrates greater robustness in adapting to uncer-
tainties and dynamic variations in the cellular network
environment.

• We propose a novel LEC-Diff model to enhance mo-
bile traffic prediction. Specifically, the GNN effectively
captures diverse relationships among base stations, envi-
ronmental features, and inter-base station connections by
utilizing context information enhanced by the LLM. This
enriched spatial context information is integrated with
temporal features in an autoregressive model, providing
accurate spatiotemporal guidance for the diffusion model
to generate future traffic distributions.

• We conduct extensive experiments on two real-world
datasets. The results reveal that the proposed model
achieved about 5% higher accuracy than the baselines,
highlighting its superior accuracy and effectiveness. Fur-
thermore, we analyze the roles of the modules within the
network structure to confirm that the proposed method
enhances the environmental perception and understanding
capabilities for base station traffic prediction.

II. SOLUTION

LEC-Diff comprises three key modules: i) The environ-
mental feature extraction module, which utilizes an LLM
to analyze satellite images and extract spatial environmental
information for base stations; ii) The spatiotemporal graph
fusion engine, designed to capture the spatial distribution
of base stations while integrating environmental and tempo-
ral latent information across spatiotemporal dimensions; and
iii) The autoregressive denoising diffusion traffic prediction
engine, which employs an autoregressive diffusion model to
generate accurate traffic predictions based on spatiotemporal
information.

A. Environmental Feature Extraction Module

Given the complexity of factors affecting prediction, pre-
dicting the traffic of the base station is challenging if the
environment in which the base station is located cannot be
deeply analyzed. To better capture environmental information,
as shown in Fig. 2(a), we design the environmental feature ex-
traction module. Specifically, we leverage the LLM to enhance
the analysis of the environment around the base station and
derive improved representations of base station environmental
information through language-image comparison pre-training.
As demonstrated in Fig. 3, empirical experiments with varying
language instructions revealed that more detailed prompts—
particularly those emphasizing specific aspects, such as urban
infrastructure—can elicit the LLM’s enhanced capability to
generate high-quality summaries. Furthermore, given the well-
documented hallucination issue, environmental descriptions
generated by LLM frequently exhibit unrealistic or ambiguous
information, which hinders the effective integration of LLM-
based knowledge into the image encoder. To thoroughly en-
hance and produce high-quality environmental representations,
it is essential to refine or rewrite textual content following es-
tablished rules. Thus, we initially apply pre-configured regular
filters to remove redundant and irrelevant textual information.
Additionally, we integrate geographical and computational
expertise to conduct secondary fact verification and devise a
dual scoring mechanism to ensure the accuracy of this process.

The preprocessed images and texts are converted into slices
using Pathify and Tokenize. After linear mapping, a unique
token ([CLS]) is added at the beginning of the sequence to
represent its overall information. The image and text data
are then input into two unimodal encoders to encode the
data into latent image and text representations. The LLM-
enhanced semantic representation and the visual representation
of the exact base station location are optimized to be as
similar as possible. However, the inconsistent modal learning
methods and the relationships between different modalities

This enriched spatial context 
information is integrated 
with temporal features in 
an autoregressive model, 
providing accurate spatio-
temporal guidance for the 

diffusion model to generate 
future traffic distributions.
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different modalities may introduce ambiguity in 
the representations of base station environmen-
tal information. Therefore, we design a contras-
tive image-text loss to jointly optimize the image 
and text encoders by comparing the image-text 
pairs with other image-text pairs in the sampling 
batch. The contrastive loss function is formulated 
based on the InfoNCE (Information Noise Con-
trastive Estimation) framework. Its objective is to 
ensure that satellite images of the same urban 
area and their corresponding textual descriptions 
are closely aligned in the latent space. The similar-
ity between images and text is quantified using a 
bidirectional loss function, ensuring alignment in 
both directions (image to text and text to image). 
Simultaneously, other samples within the batch 
serve as negative samples, enabling the model 
to learn more discriminative features and achieve 
improved generalization when applied to large-
scale data. Finally, a cross-attention mechanism 
is incorporated within the multimodal interaction 
module to effectively learn a unified representa-
tion of image and text.

Admittedly, our proposed method for improv-
ing environmental representation using LLM leads 
to a higher computational cost during the training 
phase. However, we would like to emphasize that 
this design does not impose extra computational 
overhead during the inference phase, which is 
the most critical and frequently used stage after 
deploying our model in real-world networks. It is 
worth noting that environmental dynamics occur 
gradually. Once the representation vectors are 
generated using LLM during the training stage, 
they can be reutilized across different time peri-
ods and multiple queries within the inference 
stage. This means that although training com-
putational costs may rise, the generated vectors 
can be continuously reused, thereby distributing 
computational expenses over time and yielding 
sustainable long-term advantages. In addition, our 
method can precisely and effectively model the 
spatial environment surrounding the base station. 
This comprehensive spatial contextual data, inte-
grated with temporal features, provides robust 
and accurate spatiotemporal insights for future 
mobile traffic prediction, thereby effectively over-
coming the limitations of existing approaches in 
environmental information extraction.

Spatiotemporal Graph Fusion Module
Base station traffic prediction tasks typically exhib-
it strong spatiotemporal dependencies. However, 
the nonlinear relationship between temporal and 
spatial information, as well as the conflict in learn-
ing dependencies across different dimensions, 
makes it challenging to integrate information 
effectively. We design the spatiotemporal graph 
fusion engine based on the unimodal encoder 
pre-trained earlier. As shown in Fig. 2b, we extract 
environmental features for each base station 
from satellite images using the pre-trained image 
encoder. We also extract adjacency relationships 
between base stations based on their spatial loca-
tions. Using the base-mentioned station-related 
data mentioned above, we model the spatial 
dependencies in mobile traffic across base sta-
tions by constructing a graph of a convolutional 
neural network. Finally, the spatial features output 
by the graph convolutional neural network are 

combined with the time series hidden features 
output by the recurrent neural network to enable 
an accurate spatiotemporal representation for 
base station traffic prediction. In the subsequent 
prediction process, the diffusion model can better 
capture the spatiotemporal distribution of base 
station traffic under complex spatial dependencies 
and dynamic changes.

Conditional Diffusion Prediction Module
Based on the spatiotemporal information obtained 
by the fusion network earlier, we construct LEC-
Diff utilizing the autoregressive denoising diffusion 
model. As shown in Fig. 2b, the core of the dif-
fusion model is the novel generative framework 
inspired by the diffusion process in non-equilibri-
um thermodynamics. The model consists of a for-
ward diffusion process and a backward denoising 
process. At the same time, we formulate the base 
station traffic probability prediction task as mod-
eling an autoregressive conditional probability 
distribution, precisely predicting the distribution 
of future values using past values and covariates 
as conditions.

RNN models the autoregressive process. A 
fixed distribution can represent the likelihood 
term, and a function can generate the parameters 
of the distribution. The information about past 
values is encoded into hidden states through the 
RNN sequential modeling process. Similar to the 
sequence-to-sequence (seq-to-seq) process in lan-
guage models, this hidden state represents the 
output of the encoder. The prediction process 
involves obtaining an output from the past value 
encoder, fed into the decoder to generate the 
future value. The only difference between the 
encoder and the decoder is whether the ground 
truth is involved. The covariates, considered 
known conditions, consist of time-related features 
(e.g., the day of the week or the hour of the day), 
time-independent embeddings, and lagged fea-
tures, which are determined by the frequency 
of the training dataset. We encode past period 
information and covariates into h using the RNN 
and feed h into the diffusion model to model the 
corresponding conditional probability distribu-

FIGURE 3. Text generation and refinement. Based on our carefully designed language instruction, we utilize a pre-
trained LLM to generate detailed descriptions of the environment. To further eliminate unrealistic or ambiguous 
information within the text, we establish specific refinement rules to ensure accurate and high-quality represen-
tations of the environment.
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showcasing active industrial usage in the region. 

(b) Text Refinement Filter
(untrue/vague descriptions)

Fig. 3. Text generation and refinement. Based on our carefully designed
language instruction, we utilize a pre-trained LLM to generate detailed
descriptions of the environment. To further eliminate unrealistic or ambiguous
information within the text, we establish specific refinement rules to ensure
accurate and high-quality representations of the environment.

may introduce ambiguity in the representations of base station
environmental information. Therefore, we design a contrastive
image-text loss to jointly optimize the image and text encoders
by comparing the image-text pairs with other image-text
pairs in the sampling batch. The contrastive loss function is
formulated based on the InfoNCE (Information Noise Con-
trastive Estimation) framework. Its objective is to ensure that
satellite images of the same urban area and their corresponding
textual descriptions are closely aligned in the latent space.
The similarity between images and text is quantified using a
bidirectional loss function, ensuring alignment in both direc-
tions (image to text and text to image). Simultaneously, other
samples within the batch serve as negative samples, enabling
the model to learn more discriminative features and achieve
improved generalization when applied to large-scale data.
Finally, a cross-attention mechanism is incorporated within the
multimodal interaction module to effectively learn a unified
representation of image and text.

Admittedly, our proposed method for improving environ-
mental representation using LLM leads to a higher compu-
tational cost during the training phase. However, we would
like to emphasize that this design does not impose extra
computational overhead during the inference phase, which is
the most critical and frequently used stage after deploying
our model in real-world networks. It is worth noting that
environmental dynamics occur gradually. Once the represen-
tation vectors are generated using LLM during the training
stage, they can be reutilized across different time periods and
multiple queries within the inference stage. This means that
although training computational costs may rise, the gener-
ated vectors can be continuously reused, thereby distributing
computational expenses over time and yielding sustainable
long-term advantages. In addition, our method can precisely
and effectively model the spatial environment surrounding
the base station. This comprehensive spatial contextual data,
integrated with temporal features, provides robust and accurate
spatiotemporal insights for future mobile traffic prediction,
thereby effectively overcoming the limitations of existing
approaches in environmental information extraction.

B. Spatiotemporal Graph Fusion Module

Base station traffic prediction tasks typically exhibit strong
spatiotemporal dependencies. However, the nonlinear relation-
ship between temporal and spatial information, as well as the
conflict in learning dependencies across different dimensions,
makes it challenging to integrate information effectively. We
design the spatiotemporal graph fusion engine based on the
unimodal encoder pre-trained with Sec. II-A. As shown in
Fig. 2(b), we extract environmental features for each base
station from satellite images using the pre-trained image
encoder. We also extract adjacency relationships between base
stations based on their spatial locations. Using the base-
mentioned station-related data mentioned above, we model
the spatial dependencies in mobile traffic across base stations
by constructing a graph of a convolutional neural network.
Finally, the spatial features output by the graph convolutional
neural network are combined with the time series hidden
features output by the recurrent neural network to enable an
accurate spatiotemporal representation for base station traffic
prediction. In the subsequent prediction process, the diffusion
model can better capture the spatiotemporal distribution of
base station traffic under complex spatial dependencies and
dynamic changes.

C. Conditional Diffusion Prediction Module

Based on the spatiotemporal information obtained by the
fusion network in Sec. II-B, we construct LEC-Diff utilizing
the autoregressive denoising diffusion model. As shown in
Fig. 2(b), the core of the diffusion model is the novel gen-
erative framework inspired by the diffusion process in non-
equilibrium thermodynamics. The model consists of a forward
diffusion process and a backward denoising process. At the
same time, we formulate the base station traffic probability
prediction task as modeling an autoregressive conditional
probability distribution, precisely predicting the distribution of
future values using past values and covariates as conditions.

RNN models the autoregressive process. A fixed distribution
can represent the likelihood term, and a function can generate
the parameters of the distribution. The information about past
values is encoded into hidden states through the RNN sequen-
tial modeling process. Similar to the sequence-to-sequence
(seq-to-seq) process in language models, this hidden state
represents the output of the encoder. The prediction process
involves obtaining an output from the past value encoder,
fed into the decoder to generate the future value. The only
difference between the encoder and the decoder is whether
the ground truth is involved. The covariates, considered known
conditions, consist of time-related features (e.g., the day of the
week or the hour of the day), time-independent embeddings,
and lagged features, which are determined by the frequency
of the training dataset. We encode past period information
and covariates into h using the RNN and feed h into the
diffusion model to model the corresponding conditional prob-
ability distribution. To better guide the diffusion model during
prediction, we feed the RNN hidden state and perceived
base station environmental information into the spatiotemporal
graph fusion network to extract spatiotemporal dependency
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tion. To better guide the diffusion model during 
prediction, we feed the RNN hidden state and 
perceived base station environmental informa-
tion into the spatiotemporal graph fusion network 
to extract spatiotemporal dependency features 
of base station traffic, which serve as conditional 
information for the diffusion model.

Evaluation on Real-world base station
Datasets and Baselines

The datasets used in our experiments are derived 
from large-scale mobile cellular networks in two 
major Chinese cities, Shanghai and Nanjing [5]. 
Table 1 summarizes the statistics of the Shang-
hai and Nanjing datasets. The Shanghai dataset 
contains anonymous traffic data collected from 
4,505 base stations at 30-minute intervals starting 
from August 2014. By spanning 6,340 regions, 
each data trace provides a comprehensive record 
of mobile data usage for over 150,000 users. It 
includes the anonymous device ID, the start time 
of the data connection, the base station location, 
and the amount of data used during the connec-
tion. The Nanjing dataset is larger than the Shang-
hai dataset, encompassing anonymous traffic data 
from 8,000 base stations collected at 30-minute 
intervals between February 2 and March 31, 
2021, across 6,587 regions. This large-scale, fine-
grained traffic data reinforces the credibility of our 
base station mobile traffic modeling and predic-
tion. To achieve a more comprehensive under-
standing of the base station environment, we 
leverage the ArcGIS platform’s map API (Appli-
cation Programming Interface) to retrieve satellite 
images corresponding to the geographic locations 
of base stations in the two cities. For each satellite 
image, we employ the image-to-text model GPT-
4o to generate 11,125 and 39,400 detailed tex-
tual descriptions for the base stations in the two 
cities, respectively. 

To evaluate the performance of the proposed 
model, we compare the proposed model with 
several traditional spatiotemporal methods [3, 4] 
and up-to-date generative AI approaches [14, 15].
•	 LSTM [3]. LSTM, as a specialized type of RNN, 

is designed to model sequential data while 
effectively capturing long-term dependencies. 
It addresses the vanishing gradient problem, 
enabling it to retain information across long 
time steps. LSTM employs a gating mecha-
nism, consisting of input, forget, and output 
gates, to regulate the flow of information.

•	 STGCN [4]. STGCN integrates GCN and 
gated CNN architectures to effectively cap-
ture spatiotemporal patterns in graph-struc-

tured data. It employs GCN to extract the 
graph’s topological structure and gated CNN 
to analyze dynamic mobile traffic features.

•	 WaveNet [14]. WaveNet, a generative model 
developed by DeepMind, is initially designed 
to generate raw audio data. Its core archi-
tecture, featuring causal convolutions and 
dilated convolutions, enables the model to 
effectively capture long-term dependencies.

•	 TMAF [15]. TMAF is a generative model tai-
lored to enhance probabilistic forecasting for 
multivariate time series. The model captures 
the dynamic characteristics of time series via 
the autoregressive structure and employs 
conditional normalization flow to model 
the intricate distribution of high-dimensional 
data, enabling it to more precisely capture 
the intricate relationships among variables 
and enhance forecasting performance. 
In addition, we further analyze the effects of 

combining various modules in LEC-Diff on predict-
ing base station traffic. Drop GEI entails removing 
the environmental feature extraction module from 
our proposed LEC-Diff. This modification allows us 
to evaluate the contribution of the text modality, 
provided by the LLM, in enriching environmental 
information. Drop SGF involves removing the spa-
tiotemporal graph fusion module from our pro-
posed LEC-Diff. This change helps us to verify the 
role of the GNN in enhancing spatial information 
within LEC-Diff. 

Results and Discussion
All the experiments are conducted on Pytorch 
2.0.1 based on Python 3.11.4 on the serv-
er equipped with Intel Xeon Silver 4310 with 
2.1GHz and NVIDIA GeForce RTX 3090 with 
24GB of memory. Based on this environment, we 
compare the prediction results of various models 
with the actual traffic data from two real-world 
datasets. We evaluate their performance using 
metrics such as Mean Absolute Error (MAE) and 
Root Mean Squared Error (RMSE). Figure 4 pres-
ents not only a comparison of LEC-Diff with three 
baseline models, but also a validation of the effec-
tiveness of our proposed module.

The proposed LEC-Diff model demonstrates 
outstanding performance on both datasets, out-
performing all the compared algorithms. For 
instance, as shown in Fig. 4a, the proposed LEC-
Diff model achieves over 5% reduction in MAE 
on the Shanghai dataset. Similarly, Fig. 4b high-
lights the superiority of our model on the Nan-
jing dataset, where it achieves more than a 2% 
reduction in RMSE. Compared with the LSTM 
baseline, temporal single-dimensional models are 
observed to perform poorly in the mobile traffic 
prediction task. This limitation stems from their 
inability to capture information across multiple 
dimensions. Analyzing spatial correlation based 
on spatial distribution and geographic patterns 
helps uncover the temporal patterns of change, 
thereby achieving higher performance in prac-
tical applications. STGCN is widely regarded as 
an effective method for spatiotemporal model-
ing, as it can effectively capture spatial features 
through the GNN structure. However, compared 
with STGCN, our proposed method has a perfor-
mance advantage of about 5%. This is because 
the enhanced spatial information extracted by 

TABLE 1. Statistics of the datasets used in our experiments.

Dataset Shanghai Nanjing

Collection 
Duration

Aug. 1st– 
31st, 2014

Feb. 2nd–Mar. 
31st, 2021

Time Interval 30 minutes

Covered Users  150,000  1250,000

Covered BSs 4505 8000

Covered Area 6340 6587

Textual Description 11125  39400

 Analyzing spatial 
correlation based on spatial 
distribution and geographic 

patterns helps uncover 
the temporal patterns of 

change, thereby achieving 
higher performance in 
practical applications.
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LLM incorporates a more comprehensive envi-
ronmental context rather than relying exclusively 
on the distance matrix. Compared to the afore-
mentioned deterministic prediction baseline meth-
ods, WaveNet and TMAF, which are generative 
AI-based prediction models, possess the capability 
to forecast uncertain probability distributions in 
non-stationary sequences. However, compared 
to LEC-Diff, these models exhibit notable limita-
tions in environmental modeling. We employ the 
Continuous Ranked Probability Score (CRPS) to 
assess their performance in probability distribu-
tion forecasting. Using the Nanjing dataset as an 
example, compared to WaveNet (0.3025) and 
TMAF (0.3525), our method (0.2974) achieved 
an approximate performance improvement of 
1.7%, demonstrating superior predictive ability 
for time series distribution. Overall, the proposed 
LEC-Diff model demonstrates substantial advan-
tages over all existing spatiotemporal models.

To gain deeper insights into each component 
of our model, we conduct a series of ablation 
experiments. First, we remove the Environmental 
Feature Extraction Module, followed by the Spa-
tiotemporal Graph Fusion module. The results of 
the ablation study, as shown by the “Drop GEI” 
results in Fig. 4, demonstrate that removing the 
Environmental Feature Extraction Module dimin-
ishes the model’s environmental perception capa-
bility, impairs its understanding of environmental 
context, and significantly degrades prediction per-
formance. Removing the Spatiotemporal Graph 
Fusion module (see “Drop SGF” results in Fig. 4) 
prevents the model from capturing spatial cor-
relations between base stations through spatial 
modeling. Although it retains the ability to fully 
perceive environmental information, it fails to 
extract correlation patterns between base stations 
from the environmental information, leading to a 
notable reduction in prediction performance.

Moreover, to intuitively demonstrate the 
adaptability of LEC-Diff in addressing sudden or 
unexpected situations, Fig. 4c illustrates its capa-
bility to predict mobile traffic distribution. For this 
purpose, a base station from each city is selected 

for analysis as an example. As is shown in this fig-
ure, we mark some obvious traffic fluctuations 
during the observed time period. Notably, even 
when unexpected events lead to traffic fluctua-
tions, our prediction method effectively captures 
such fluctuations within the 50% confidence inter-
val. For general regular changes, our model suc-
cessfully encapsulates regular changes within the 
broader 90% confidence interval. In summary, the 
proposed LEC-Diff model offers a robust and pre-
cise characterization of future changes in mobile 
cellular traffic.

We conduct the efficiency analysis to evalu-
ate the performance of LEC-Diff. In terms of the 
model capacity, the trained prediction model con-
tains only 21.8M parameters, enabling flexible 
deployment on various lightweight nodes. More-
over, our model demonstrates high inference effi-
ciency. As illustrated in Fig. 5, the inference time 
remains non-linear and does not rise proportion-
ally as the network scale increases. Instead, the 
inference latency stabilizes progressively and con-
sistently remains at a low level. For instance, in a 
network with 8,000 base station nodes, the model 
achieves an inference latency as low as 11.3 ms. 
Hence, the model demonstrates robust scalability, 

FIGURE 5. Computational Efficiency Analysis. Our proposed model has reduced 
inference time and enhanced adaptability in practical applications. 
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Fig. 5. Computational Efficiency Analysis. Our proposed model has reduced
inference time and enhanced adaptability in practical applications.

direction. In this context, the balance between its benefits and
costs is a pivotal factor influencing the practical success of its
application.

Benefits Analysis. Large generative AI models offer sub-
stantial advantages through extensive data training. LLMs uti-
lize rich textual knowledge embedded within extensive training
data to extract environmental features in urban environments,
removing the need for manually constructing urban knowledge
graphs. Moreover, the probabilistic modeling capabilities of
generative AI significantly enhance its already exceptional po-
tential. By modeling underlying probability distributions and
dependencies within the data, generative AI can quantify the
uncertainty of generated results and facilitate the evaluation of
output reliability in time-series prediction tasks characterized
by nonlinearity and non-stationarity.

Costs Analysis. Although generative AI offers considerable
advantages and opportunities, it inevitably incurs higher short-
term computational costs during training. Therefore, when
deploying generative AI, it is essential to carefully assess
performance gains against associated computational costs. In
our study, environmental representation vectors produced by
LLMs during training can be reused across various time
instances and multiple requests during inference. This reuse
strategy can effectively amortize overall computational costs
while delivering sustainable long-term benefits.

Based on this, future efforts could focus on reducing the
diffusion steps in the generation process, adopting a more
lightweight neural network architecture, and leveraging hard-
ware accelerations (such as GPU/TPU optimization) to speed
up the inference process. In addition, exploring multi-task
learning strategies, which involve simultaneous processing of
related tasks (e.g., traffic prediction, congestion detection,
and anomaly identification), could enhance computational ef-
ficiency through shared feature representations.
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In terms of the model 
capacity, the trained 

prediction model contains 
only 21.8M parameters, 

enabling flexible deploy-
ment on various lightweight 

nodes. 
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supports flexible, lightweight deployment, and 
effectively meets real-time requirements in large-
scale network applications.

Conclusion and Future Directions
In this article, we explore the potential of gen-
erative AI for addressing the problem of mobile 
cellular traffic prediction. To achieve that goal, 
we propose an LLM-enhanced conditional dif-
fusion model named LEC-Diff, which adaptively 
generates environmentally enhanced information 
tailored to different cities and predicts future cellu-
lar traffic distribution by modeling spatiotemporal 
traffic patterns. Extensive experiments on large-
scale mobile cellular traffic datasets demonstrate 
that LEC-Diff outperforms the baseline models. 

Inspired by our work, the application of gener-
ative AI techniques in communications represents 
a promising research direction. In this context, 
the balance between its benefits and costs is a 
pivotal factor influencing the practical success of 
its application.

Benefits Analysis. Large generative AI models 
offer substantial advantages through extensive 
data training. LLMs utilize rich textual knowl-
edge embedded within extensive training data 
to extract environmental features in urban envi-
ronments, removing the need for manually con-
structing urban knowledge graphs. Moreover, the 
probabilistic modeling capabilities of generative 
AI significantly enhance its already exceptional 
potential. By modeling underlying probability 
distributions and dependencies within the data, 
generative AI can quantify the uncertainty of 
generated results and facilitate the evaluation of 
output reliability in time-series prediction tasks 
characterized by nonlinearity and non-stationarity.

Costs Analysis. Although generative AI offers 
considerable advantages and opportunities, it 
inevitably incurs higher short-term computational 
costs during training. Therefore, when deploying 
generative AI, it is essential to carefully assess per-
formance gains against associated computational 
costs. In our study, environmental representation 
vectors produced by LLMs during training can be 
reused across various time instances and multiple 
requests during inference. This reuse strategy can 
effectively amortize overall computational costs 
while delivering sustainable long-term benefits.

Based on this, future efforts could focus on 
reducing the diffusion steps in the generation pro-
cess, adopting a more lightweight neural network 
architecture, and leveraging hardware accelera-
tions (such as GPU/TPU optimization) to speed 
up the inference process. In addition, exploring 
multi-task learning strategies, which involve simul-
taneous processing of related tasks (e.g., traffic 
prediction, congestion detection, and anomaly 
identification), could enhance computational effi-
ciency through shared feature representations.
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