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ABSTRACT

Accurate traffic prediction is critical for ensur-
ing the efficient operation of mobile networks
and maintaining a seamless user experience.
However, existing approaches face several sig-
nificant challenges: high costs and incomplete
environmental perception, difficulty capturing
spatial correlations between base stations, and
limited adaptability to irregular traffic fluctuations
driven by user activities. This article proposes an
LLM-enhanced Conditional Diffusion (LEC-Diff)
model for cellular traffic prediction to address the
abovementioned challenges. First, we utilize eas-
ily accessible aerial images to describe the static
environmental context surrounding base stations.
We further enhance this representation by lever-
aging comprehensive textual data from a Large
Language Model (LLM) for these images, extract-
ing the abundant inherent knowledge embedded
within the LLM. Second, we employ a Graph
Neural Network (GNN) to automatically model
the spatial dependencies between base stations
and enhance spatiotemporal information through
mapping. Finally, we introduce a conditional diffu-
sion model to capture complex traffic distributions
by conditioning predictions on static environmen-
tal features and dynamic historical traffic features.
Extensive experiments demonstrate that our pro-
posed model surpasses state-of-the-art methods
by over 5% in mobile traffic prediction.

INTRODUCTION

With the rapid evolution of wireless communi-
cations, diversified services such as short videos
and live broadcasts have significantly accelerated
mobile traffic growth. Rapidly developing these
emerging mobile services has introduced signif-
icant challenges to cellular networks, including
increasing pressure on network resources and
issues like congestion and delays [1]. To over-
come these challenges and deliver high-quality
network services, accurate traffic prediction has
become a critical capability for operators and
infrastructure providers, enabling the optimiza-
tion of resource allocation and proactive network
control, ensuring the growing demand for reliable
and efficient connectivity is met [2].

Numerous studies have sought to enhance
the accuracy of mobile traffic prediction. Initial-

ly, researchers approached traffic prediction as
a general time-series forecasting problem, using
Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks [3] to
capture the temporal dependencies of traffic at
individual base stations. These purely temporal
models fail to consider the spatial correlations
between base stations. Thus, several studies have
incorporated Graph Neural Networks (GNNs)
into their frameworks, leveraging graph structures
to model the spatial distributions of base stations.
For example, Yu et al. [4] proposed an innovative
architecture integrating the Graph Convolution-
al Network (GCN) with the gated Convolutional
Neural Network (CNN). By extracting the topolog-
ical structure of the graph network, the dynamic
characteristics of mobile traffic are comprehen-
sively analyzed, thereby effectively uncovering
spatiotemporal variations in mobile traffic data.
Beyond spatial and temporal dependencies, the
contextual environmental information of base
stations is also a critical factor in mobile traffic
prediction. Gong et al. [5] were among the first
to integrate environmental information into their
models. Specifically, they constructed an urban
knowledge graph to represent the spatial structure
of a city and applied knowledge graph embed-
ding techniques to capture environmental factors.
However, building an urban knowledge graph for
each city is not only time-intensive and labor-in-
tensive but also requires access to sensitive data,
such as citizens’ trajectories, which raises privacy
concerns. These issues severely limit the practi-
cality of this approach in large-scale, real-world
applications. Furthermore, most existing methods
rely on deterministic predictions, which constrain
their ability to model the distribution of traffic.
As a result, these methods struggle to adapt to
sudden traffic fluctuations caused by unexpected
events. These limitations underscore the need for
more robust and flexible tools to improve the per-
formance of mobile traffic prediction, particularly
in dynamic and complex environments.

In recent years, generative Al has achieved
remarkable performance in domains such as image
generation and Natural Language Processing (NLP)
thanks to its high-quality generative capabilities,
flexibility, and scalability [6]. Furthermore, gener-
ative Al models, such as diffusion models, excel

Zhu Xiao, Rui Wang, and Tong Li (corresponding author) are with Hunan University, China; Jing Bai is with Xidian University, China;
Shiyuan Zhang is with Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam, China; Kegin Li is

Digital Object Identifie: 10.1109/MCOM.0012400779 with State University of New York, New Paltz, USA; Zhu Han is with the University of Houston, USA and Kyung Hee University, South Korea.

60 0163-6804/25/$25.00 © 2025 IEEE
Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 01:59:10 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Magazine ¢ September 2025



............................  mmememmmmeceesccces-s-mcecsssaceee-aaa, S
; Environment i i GNN H / \
i | : @ Node Feature ' i o
! Image i S ! A "W oa
\ " I D—G@ Spatial Feature : H
] - L : 1 = 1! o :
) ———
HEOA LLM CLIP 1} () Base Station &) \ Temporal Feature —H [ [ ] oommr=ss, . 1
1| A " @ 8 0 = [H x? x¢ i
: — " g & » H ‘ i
! NS i - € 1T " 4 n=ljon !
| " € R ) " P (x' Ix{', ste—1) I
! Environment 2 ! : Traffic Time Series — LSTM | % [EININEEE ) " i s 4 '
, Description :: O :: t=1% :
i " i i
| (a) Environmental Feature Extraction 1! b) Spatiotemporal Graph Fusion H ¢) Conditional Diffusion Prediction '
1 U
N e e e e————————————— e N L .. ;

FIGURE 1. Overview of LEC-DIiff, The Environmental Feature Extraction Module s responsible for extracting environmental features of base stations using image-
text pairs. The Spatiotemporal Graph Fusion Module integrates environmental features with historical traffic temporal features across base stations by
jointly modeling them through RNNs and GNNs. Finally, the Conditional Diffusion Prediction Module models future traffic distribution samples conditioned

on the fused spatiotemporal features of each individual base station.

at effectively modeling underlying probability dis-
tributions and dependencies in data, showcasing
their potential for time series prediction tasks that
involve nonlinearity and non-stationarity [7]. Alter-
natively, Large Language Models (LLMs), as gener-
ative Al-based foundational models, are trained on
vast corpora of natural language data [8, 91. They
have significant potential for leveraging the rich
textual knowledge embedded in their vast training
data to extract environmental features in urban
settings, eliminating the need to construct urban
knowledge graphs manually.

Despite the efforts, several challenging issues
remain unresolved in the aforementioned works.
+ Environmental Feature Extraction for Base

Stations. Mobile users in similar environ-
ments exhibit similar network usage behav-
iors, leading to corresponding base stations
sharing similar traffic patterns. This makes
environmental contextual information crit-
ical and valuable for cellular traffic predic-
tion [10, 11]. Existing studies have initially
employed point-of-interest (POI) distributions
to describe surrounding environments. POI
data indicate locations of particular interest
for specific purposes. However, such data
are often inaccessible to operators and
researchers as internet companies typically
control them. Furthermore, POI datasets are
not frequently updated, with updates often
occurring over several years. Additionally,
POI data provide only a limited view of the
environment, neglecting rich regional tex-
tural features and urban structures such
as building distributions and road layouts.
Furthermore, some researchers have pro-
posed building urban knowledge graphs to
represent urban regional structures. In such
graphs, elements like regions, business areas,
and transportation hubs are represented as
elements, with user behavior data used to
establish relationships between these ele-
ments. However, constructing urban knowl-
edge graphs is both time-consuming and
labor-intensive. For new cities, this process
requires manual data collection and graph
construction, making it impractical in many
scenarios. In summary, the effective and
efficient extraction of environmental infor-
mation remains a significant and unresolved
challenge for cellular traffic prediction.

+ Traffic Uncertainty Fluctuations. Mobile traf-
fic is highly volatile, as it is influenced not
only by spatiotemporal characteristics but
also by numerous discrete potential factors.

For instance, regional gatherings triggered
by special events can cause sudden traffic
surges. Traditional deterministic prediction
methods often produce significant predic-
tion errors in such cases [12]. In addition,
abnormal traffic fluctuations caused by such
behaviors in historical traffic data hinder
model development, preventing the model
from effectively capturing general patterns
and reducing its overall accuracy.

In this article, we propose an LLM-Enhanced
Conditional Diffusion model (LEC-Diff) for mobile
traffic prediction. Figure 1 illustrates the framework
of LEC-Diff, composed of three key modules, i.e.,
the LLM-enhanced environment feature extraction
module, the spatiotemporal graph fusion module,
and the conditional diffusion prediction module. In
the LLM-enhanced environment feature extraction
module, we leverage readily available aerial imag-
es, i.e., satellite images, to capture the urban
environmental context surrounding base stations.
Additionally, we harness the rich textual knowl-
edge embedded in pre-trained LLMs to generate
detailed textual descriptions for each aerial image,
thereby enriching the contextual information. This
process yields image-text pairs, which we utilize
in a contrastive language-image pretraining [13]
approach to integrate multimodal features effec-
tively. This integration enables a more accurate and
insightful understanding of environmental contexts.
The spatiotemporal graph fusion module extracts
spatiotemporal information by jointly modeling
RNNs and GNNs. The GNN uses a graph struc-
ture to represent the spatial relationships among
base stations, where nodes correspond to base sta-
tions and edges represent the distances between
them. The environmental features extracted by the
LLM-enhanced environmental feature extraction
module are incorporated as the spatial features
of the nodes. Simultaneously, the historical traffic
time series of the base stations are processed by
the RNN to generate the temporal features of the
nodes. The GNN then fuses these node features
through aggregation and propagation operations,
providing a more comprehensive and accurate
representation of spatiotemporal dependencies
within the cellular network. Finally, in the condi-
tional diffusion prediction module, the spatiotem-
poral enhancement information obtained from the
spatiotemporal graph fusion module is used as a
condition for the diffusion model. Through a Mar-
kov chain with Langevin sampling, white noise is
progressively transformed into future traffic distri-
bution samples under the guidance of conditional
information, enabling accurate traffic predictions.

The GNN then fuses these
node features through
aggregation and propaga-
tion operations, providing
a more comprehensive and
accurate representation

of spatiotemporal depen-

dencies within the cellular
network.
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This enriched spatial context
information is integrated
with temporal features in
an autoregressive model,

providing accurate spatio-

temporal guidance for the
diffusion model to generate
future traffic distributions.
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FIGURE 2. Architecture of LEC-DIff, The Environmental Feature Extraction Module leverages LLM to improve environmental perception and generate a com-
prehensive text modality, while the constructed image-text data pairs are aligned using CLIP. The conditional diffusion prediction module employs the
diffusion model to predict future mobile traffic distributions using spatiotemporal conditions provided by the graph fusion module.

Our contributions are summarized as follows. autoregressive diffusion model to generate
+ We propose a generative Al-driven paradigm accurate traffic predictions based on spatio-
for mobile traffic prediction. The compre- temporal information.
hensive text data generated by LLM is a crit-
ical supplement, aiding in the efficient and ENVIRONMENTAL FEATURE EXTRACTION MODULE
high-quality characterization of the spatial Given the complexity of factors affecting predic-
environment surrounding the base station. tion, predicting the traffic of the base station is
The conditional diffusion model can gener- challenging if the environment in which the base
ate probability distribution predictions based station is located cannot be deeply analyzed.
on this enhanced spatial information and To better capture environmental information,
demonstrates greater robustness in adapting as shown in Fig. 2a, we design the environmen-
to uncertainties and dynamic variations in tal feature extraction module. Specifically, we
the cellular network environment. leverage the LLM to enhance the analysis of the
+ We propose a novel LEC-Diff model to environment around the base station and derive
enhance mobile traffic prediction. Specifi- improved representations of base station envi-
cally, the GNN effectively captures diverse ronmental information through language-image
relationships among base stations, envi- comparison pre-training. As demonstrated in Fig.
ronmental features, and inter-base station 3, empirical experiments with varying language
connections by utilizing context information instructions revealed that more detailed prompts
enhanced by the LLM. This enriched spatial — particularly those emphasizing specific aspects,
context information is integrated with tem- such as urban infrastructure — can elicit the LLM's
poral features in an autoregressive model, enhanced capability to generate high-quality sum-
providing accurate spatiotemporal guidance maries. Furthermore, given the well-documented
for the diffusion model to generate future hallucination issue, environmental descriptions
traffic distributions. generated by LLM frequently exhibit unrealistic or
+ We conduct extensive experiments on two ambiguous information, which hinders the effec-
real-world datasets. The results reveal that the tive integration of LLM-based knowledge into the
proposed model achieved about 5% higher image encoder. To thoroughly enhance and pro-
accuracy than the baselines, highlighting its duce high-quality environmental representations,
superior accuracy and effectiveness. Further- it is essential to refine or rewrite textual content
more, we analyze the roles of the modules following established rules. Thus, we initially apply
within the network structure to confirm that pre-configured regular filters to remove redun-
the proposed method enhances the environ- dant and irrelevant textual information. Addition-
mental perception and understanding capabil- ally, we integrate geographical and computational
ities for base station traffic prediction. expertise to conduct secondary fact verification
SOLUTION and devise a dual. scoring mechanism to ensure
the accuracy of this process.
LEC-Diff comprises three key modules: The preprocessed images and texts are con-
1. The environmental feature extraction mod- verted into slices using Pathify and Tokenize. After
ule, which utilizes an LLM to analyze satel- linear mapping, a unique token ([CLS]) is added
lite images and extract spatial environmental at the beginning of the sequence to represent its
information for base stations; overall information. The image and text data are
2. The spatiotemporal graph fusion engine, then input into two unimodal encoders to encode
designed to capture the spatial distribution the data into latent image and text representa-
of base stations while integrating environ- tions. The LLM-enhanced semantic representa-
mental and temporal latent information tion and the visual representation of the exact
across spatiotemporal dimensions; base station location are optimized to be as sim-
3. The autoregressive denoising diffusion traf- ilar as possible. However, the inconsistent modal
fic prediction engine, which employs an learning methods and the relationships between
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different modalities may introduce ambiguity in
the representations of base station environmen-
tal information. Therefore, we design a contras-
tive image-text loss to jointly optimize the image
and text encoders by comparing the image-text
pairs with other image-text pairs in the sampling
batch. The contrastive loss function is formulated
based on the InfoNCE (Information Noise Con-
trastive Estimation) framework. Its objective is to
ensure that satellite images of the same urban
area and their corresponding textual descriptions
are closely aligned in the latent space. The similar-
ity between images and text is quantified using a
bidirectional loss function, ensuring alignment in
both directions (image to text and text to image).
Simultaneously, other samples within the batch
serve as negative samples, enabling the model
to learn more discriminative features and achieve
improved generalization when applied to large-
scale data. Finally, a cross-attention mechanism
is incorporated within the multimodal interaction
module to effectively learn a unified representa-
tion of image and text.

Admittedly, our proposed method for improv-
ing environmental representation using LLM leads
to a higher computational cost during the training
phase. However, we would like to emphasize that
this design does not impose extra computational
overhead during the inference phase, which is
the most critical and frequently used stage after
deploying our model in real-world networks. It is
worth noting that environmental dynamics occur
gradually. Once the representation vectors are
generated using LLM during the training stage,
they can be reutilized across different time peri-
ods and multiple queries within the inference
stage. This means that although training com-
putational costs may rise, the generated vectors
can be continuously reused, thereby distributing
computational expenses over time and yielding
sustainable long-term advantages. In addition, our
method can precisely and effectively model the
spatial environment surrounding the base station.
This comprehensive spatial contextual data, inte-
grated with temporal features, provides robust
and accurate spatiotemporal insights for future
mobile traffic prediction, thereby effectively over-
coming the limitations of existing approaches in
environmental information extraction.

SPATIOTEMPORAL GRAPH FUSION MODULE

Base station traffic prediction tasks typically exhib-
it strong spatiotemporal dependencies. However,
the nonlinear relationship between temporal and
spatial information, as well as the conflict in learn-
ing dependencies across different dimensions,
makes it challenging to integrate information
effectively. We design the spatiotemporal graph
fusion engine based on the unimodal encoder
pre-trained earlier. As shown in Fig. 2b, we extract
environmental features for each base station
from satellite images using the pre-trained image
encoder. We also extract adjacency relationships
between base stations based on their spatial loca-
tions. Using the base-mentioned station-related
data mentioned above, we model the spatial
dependencies in mobile traffic across base sta-
tions by constructing a graph of a convolutional
neural network. Finally, the spatial features output
by the graph convolutional neural network are

Instruction

(b) Text Refinement

Generated Text : This aerial image presents a densely developed
urban area with prominent human activity and well-structured
infrastructure. The urban infrastructure is well-developed, with a grid-

Image to Text like road network that facilitates transportation and connectivity. A
- — sports facility with a red running track is visible, suggesting
recreational amenities for the local population. The presence of small
GPT 40 water bodies and green fields indicates some degree of environmental

balance within the urban expansion. Industrial or commercial buildings
likely serve as factories, warehouses, or production facilities,
showcasing active industrial usage in the region. This image illustrates
a vibrant urban environment, supported by a well-organized
Language infrastructure network and community spaces.

(untrue/vague descriptions)

Language Instruction Refined Text : This aerial image presents a densely developed urban
- Describe in detail the information area with prominent human activity and well-structured infrastructure.
contained in the satellite image The urban infrastructure is well-developed, with a grid-like road
- Use descriptive language to offer a network that facilitates transportation and connectivity. A sports
comprehensive summary of human facility with a red running track is visible, suggesting recreational
activity, urban infrastructure, and amenities for the local population. Industrial or commercial buildings
environments in aerial image .‘ likely serve as factories, warehouses, or production facilities,

showcasing active industrial usage in the region.

FIGURE 3. Text generation and refinement. Based on our carefully designed language instruction, we utilize a pre-
trained LLM to generate detailed descriptions of the environment, To further eliminate unrealistic or ambiguous

information within the text, we establish specific refinement rules to ensure accurate and high-quality represen-

tations of the environment,

combined with the time series hidden features
output by the recurrent neural network to enable
an accurate spatiotemporal representation for
base station traffic prediction. In the subsequent
prediction process, the diffusion model can better
capture the spatiotemporal distribution of base
station traffic under complex spatial dependencies
and dynamic changes.

ConpiTIoNAL DIFFUSION PREDICTION MoDULE

Based on the spatiotemporal information obtained
by the fusion network earlier, we construct LEC-
Diff utilizing the autoregressive denoising diffusion
model. As shown in Fig. 2b, the core of the dif-
fusion model is the novel generative framework
inspired by the diffusion process in non-equilibri-
um thermodynamics. The model consists of a for-
ward diffusion process and a backward denoising
process. At the same time, we formulate the base
station traffic probability prediction task as mod-
eling an autoregressive conditional probability
distribution, precisely predicting the distribution
of future values using past values and covariates
as conditions.

RNN models the autoregressive process. A
fixed distribution can represent the likelihood
term, and a function can generate the parameters
of the distribution. The information about past
values is encoded into hidden states through the
RNN sequential modeling process. Similar to the
sequence-to-sequence (seq-to-seq) process in lan-
guage models, this hidden state represents the
output of the encoder. The prediction process
involves obtaining an output from the past value
encoder, fed into the decoder to generate the
future value. The only difference between the
encoder and the decoder is whether the ground
truth is involved. The covariates, considered
known conditions, consist of time-related features
(e.g., the day of the week or the hour of the day),
time-independent embeddings, and lagged fea-
tures, which are determined by the frequency
of the training dataset. We encode past period
information and covariates into h using the RNN
and feed h into the diffusion model to model the
corresponding conditional probability distribu-

IEEE Communications Magazine  September 2025

Authorized licensed use limited to: HUNAN UNIVERSITY. Downloaded on February 02,2026 at 01:59:10 UTC from IEEE Xplore. Restrictions apply.

63



Analyzing spatial
correlation based on spatial
distribution and geagraphic

patterns helps uncover

the temporal patterns of
change, thereby achieving
higher performance in
practical applications.

Dataset Shanghai Nanjing
Collection Aug. 1st— Feb. 2nd—Mar.
Duration 31st, 2014 31st, 2021
Time Interval 30 minutes
Covered Users > 150,000 >1250,000
Covered BSs 4505 8000
Covered Area 6340 6587
Textual Description 11125 39400

TABLE 1. Statistics of the datasets used in our experiments.

tion. To better guide the diffusion model during
prediction, we feed the RNN hidden state and
perceived base station environmental informa-
tion into the spatiotemporal graph fusion network
to extract spatiotemporal dependency features
of base station traffic, which serve as conditional
information for the diffusion model.

EVALUATION ON REAL-WORLD BASE STATION
DATASETS AND BASELINES

The datasets used in our experiments are derived
from large-scale mobile cellular networks in two
major Chinese cities, Shanghai and Nanjing [5].
Table 1 summarizes the statistics of the Shang-
hai and Nanjing datasets. The Shanghai dataset
contains anonymous traffic data collected from
4,505 base stations at 30-minute intervals starting
from August 2014. By spanning 6,340 regions,
each data trace provides a comprehensive record
of mobile data usage for over 150,000 users. It
includes the anonymous device ID, the start time
of the data connection, the base station location,
and the amount of data used during the connec-
tion. The Nanjing dataset is larger than the Shang-
hai dataset, encompassing anonymous traffic data
from 8,000 base stations collected at 30-minute
intervals between February 2 and March 31,
2021, across 6,587 regions. This large-scale, fine-
grained traffic data reinforces the credibility of our
base station mobile traffic modeling and predic-
tion. To achieve a more comprehensive under-
standing of the base station environment, we
leverage the ArcGIS platform’s map APl (Appli-
cation Programming Interface) to retrieve satellite
images corresponding to the geographic locations
of base stations in the two cities. For each satellite
image, we employ the image-to-text model GPT-
40 to generate 11,125 and 39,400 detailed tex-
tual descriptions for the base stations in the two
cities, respectively.

To evaluate the performance of the proposed
model, we compare the proposed model with
several traditional spatiotemporal methods [3, 4]
and up-to-date generative Al approaches [14, 15].
+ LSTM [3]. LSTM, as a specialized type of RNN,

is designed to model sequential data while

effectively capturing long-term dependencies.

It addresses the vanishing gradient problem,

enabling it to retain information across long

time steps. LSTM employs a gating mecha-
nism, consisting of input, forget, and output
gates, to regulate the flow of information.

+ STGCN [4]. STGCN integrates GCN and
gated CNN architectures to effectively cap-
ture spatiotemporal patterns in graph-struc-

tured data. It employs GCN to extract the
graph’s topological structure and gated CNN
to analyze dynamic mobile traffic features.

* WaveNet [14]. WaveNet, a generative model
developed by DeepMind, is initially designed
to generate raw audio data. Its core archi-
tecture, featuring causal convolutions and
dilated convolutions, enables the model to
effectively capture long-term dependencies.

* TMAF [15]. TMAF is a generative model tai-
lored to enhance probabilistic forecasting for
multivariate time series. The model captures
the dynamic characteristics of time series via
the autoregressive structure and employs
conditional normalization flow to model
the intricate distribution of high-dimensional
data, enabling it to more precisely capture
the intricate relationships among variables
and enhance forecasting performance.

In addition, we further analyze the effects of
combining various modules in LEC-Diff on predict-
ing base station traffic. Drop GEl entails removing
the environmental feature extraction module from
our proposed LEC-Diff. This modification allows us
to evaluate the contribution of the text modality,
provided by the LLM, in enriching environmental
information. Drop SGF involves removing the spa-
tiotemporal graph fusion module from our pro-
posed LEC-Diff. This change helps us to verify the
role of the GNN in enhancing spatial information
within LEC-Diff.

RESULTS AND DiSCUSSION

All the experiments are conducted on Pytorch
2.0.1 based on Python 3.11.4 on the serv-
er equipped with Intel Xeon Silver 4310 with
2.1GHz and NVIDIA GeForce RTX 3090 with
24GB of memory. Based on this environment, we
compare the prediction results of various models
with the actual traffic data from two real-world
datasets. We evaluate their performance using
metrics such as Mean Absolute Error (MAE) and
Root Mean Squared Error (RMSE). Figure 4 pres-
ents not only a comparison of LEC-Diff with three
baseline models, but also a validation of the effec-
tiveness of our proposed module.

The proposed LEC-Diff model demonstrates
outstanding performance on both datasets, out-
performing all the compared algorithms. For
instance, as shown in Fig. 4a, the proposed LEC-
Diff model achieves over 5% reduction in MAE
on the Shanghai dataset. Similarly, Fig. 4b high-
lights the superiority of our model on the Nan-
jing dataset, where it achieves more than a 2%
reduction in RMSE. Compared with the LSTM
baseline, temporal single-dimensional models are
observed to perform poorly in the mobile traffic
prediction task. This limitation stems from their
inability to capture information across multiple
dimensions. Analyzing spatial correlation based
on spatial distribution and geographic patterns
helps uncover the temporal patterns of change,
thereby achieving higher performance in prac-
tical applications. STGCN is widely regarded as
an effective method for spatiotemporal model-
ing, as it can effectively capture spatial features
through the GNN structure. However, compared
with STGCN, our proposed method has a perfor-
mance advantage of about 5%. This is because
the enhanced spatial information extracted by
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FIGURE 4. Prediction results. (a, b) Overall prediction performance of LEC-Diff in comparison with other algorithms on Shanghai and Nanjing datasets. The
compared algorithms include not only baselines but also ablation studies; c) we select one base station from each of the two city datasets to analyze the
impact of LEC-Diff on the predicted distribution. The uncertainty fluctuations in mobile traffic are highlighted with a red elliptical border.

LLM incorporates a more comprehensive envi-
ronmental context rather than relying exclusively
on the distance matrix. Compared to the afore-
mentioned deterministic prediction baseline meth-
ods, WaveNet and TMAF, which are generative
Al-based prediction models, possess the capability
to forecast uncertain probability distributions in
non-stationary sequences. However, compared
to LEC-Diff, these models exhibit notable limita-
tions in environmental modeling. We employ the
Continuous Ranked Probability Score (CRPS) to
assess their performance in probability distribu-
tion forecasting. Using the Nanjing dataset as an
example, compared to WaveNet (0.3025) and
TMAF (0.3525), our method (0.2974) achieved
an approximate performance improvement of
1.7%, demonstrating superior predictive ability
for time series distribution. Overall, the proposed
LEC-Diff model demonstrates substantial advan-
tages over all existing spatiotemporal models.

To gain deeper insights into each component
of our model, we conduct a series of ablation
experiments. First, we remove the Environmental
Feature Extraction Module, followed by the Spa-
tiotemporal Graph Fusion module. The results of
the ablation study, as shown by the “Drop GEI”
results in Fig. 4, demonstrate that removing the
Environmental Feature Extraction Module dimin-
ishes the model’s environmental perception capa-
bility, impairs its understanding of environmental
context, and significantly degrades prediction per-
formance. Removing the Spatiotemporal Graph
Fusion module (see “Drop SGF” results in Fig. 4)
prevents the model from capturing spatial cor-
relations between base stations through spatial
modeling. Although it retains the ability to fully
perceive environmental information, it fails to
extract correlation patterns between base stations
from the environmental information, leading to a
notable reduction in prediction performance.

Moreover, to intuitively demonstrate the
adaptability of LEC-Diff in addressing sudden or
unexpected situations, Fig. 4c illustrates its capa-
bility to predict mobile traffic distribution. For this
purpose, a base station from each city is selected
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1 1
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FIGURE 5. Computational Efficiency Analysis. Our proposed model has reduced
inference time and enhanced adaptability in practical applications.

for analysis as an example. As is shown in this fig-
ure, we mark some obvious traffic fluctuations
during the observed time period. Notably, even
when unexpected events lead to traffic fluctua-
tions, our prediction method effectively captures
such fluctuations within the 50% confidence inter-
val. For general regular changes, our model suc-
cessfully encapsulates regular changes within the
broader 90% confidence interval. In summary, the
proposed LEC-Diff model offers a robust and pre-
cise characterization of future changes in mobile
cellular traffic.

We conduct the efficiency analysis to evalu-
ate the performance of LEC-Diff. In terms of the
model capacity, the trained prediction model con-
tains only 21.8M parameters, enabling flexible
deployment on various lightweight nodes. More-
over, our model demonstrates high inference effi-
ciency. As illustrated in Fig. 5, the inference time
remains non-linear and does not rise proportion-
ally as the network scale increases. Instead, the
inference latency stabilizes progressively and con-
sistently remains at a low level. For instance, in a
network with 8,000 base station nodes, the model
achieves an inference latency as low as 11.3 ps.
Hence, the model demonstrates robust scalability,

In terms of the model
capacity, the trained
prediction model contains

only 21.8M parameters,

enabling flexible deploy-
ment on various lightweight
nodes.
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supports flexible, lightweight deployment, and
effectively meets real-time requirements in large-
scale network applications.

CONCLUSION AND FUTURE DIRECTIONS

In this article, we explore the potential of gen-
erative Al for addressing the problem of mobile
cellular traffic prediction. To achieve that goal,
we propose an LLM-enhanced conditional dif-
fusion model named LEC-Diff, which adaptively
generates environmentally enhanced information
tailored to different cities and predicts future cellu-
lar traffic distribution by modeling spatiotemporal
traffic patterns. Extensive experiments on large-
scale mobile cellular traffic datasets demonstrate
that LEC-Diff outperforms the baseline models.

Inspired by our work, the application of gener-
ative Al techniques in communications represents
a promising research direction. In this context,
the balance between its benefits and costs is a
pivotal factor influencing the practical success of
its application.

Benefits Analysis. Large generative Al models
offer substantial advantages through extensive
data training. LLMs utilize rich textual knowl-
edge embedded within extensive training data
to extract environmental features in urban envi-
ronments, removing the need for manually con-
structing urban knowledge graphs. Moreover, the
probabilistic modeling capabilities of generative
Al significantly enhance its already exceptional
potential. By modeling underlying probability
distributions and dependencies within the data,
generative Al can quantify the uncertainty of
generated results and facilitate the evaluation of
output reliability in time-series prediction tasks
characterized by nonlinearity and non-stationarity.

Costs Analysis. Although generative Al offers
considerable advantages and opportunities, it
inevitably incurs higher short-term computational
costs during training. Therefore, when deploying
generative Al, it is essential to carefully assess per-
formance gains against associated computational
costs. In our study, environmental representation
vectors produced by LLMs during training can be
reused across various time instances and multiple
requests during inference. This reuse strategy can
effectively amortize overall computational costs
while delivering sustainable long-term benefits.

Based on this, future efforts could focus on
reducing the diffusion steps in the generation pro-
cess, adopting a more lightweight neural network
architecture, and leveraging hardware accelera-
tions (such as GPU/TPU optimization) to speed
up the inference process. In addition, exploring
multi-task learning strategies, which involve simul-
taneous processing of related tasks (e.g., traffic
prediction, congestion detection, and anomaly
identification), could enhance computational effi-
ciency through shared feature representations.
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