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cuFastTuckerPlusTC: A Stochastic Parallel Sparse
FastTucker Decomposition Using GPU Tensor Cores
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Abstract—Sparse tensors are prevalent in real-world applica-
tions, often characterized by their large-scale, high-order, and
high-dimensional nature. Directly handling raw tensors is imprac-
tical due to the significant memory and computational overhead
involved. The current mainstream approach involves compressing
or decomposing the original tensor. One popular tensor decom-
position algorithm is the Tucker decomposition. However, existing
state-of-the-art algorithms for large-scale Tucker decomposition
typically relax the original optimization problem into multiple
convex optimization problems to ensure polynomial convergence.
Unfortunately, these algorithms tend to converge slowly. In con-
trast, tensor decomposition exhibits a simple optimization land-
scape, making local search algorithms capable of converging to a
global (approximate) optimum much faster. In this article, we pro-
pose the FastTuckerPlus algorithm, which decomposes the original
optimization problem into two non-convex optimization problems
and solves them alternately using the Stochastic Gradient Descent
method. Furthermore, we introduce cuFastTuckerPlusTC, a fine-
grained parallel algorithm designed for GPU platforms, leverag-
ing the performance of tensor cores. This algorithm minimizes
memory access overhead and computational costs, surpassing the
state-of-the-art algorithms. Our experimental results demonstrate
that the proposed method achieves a 2 X to 8 X improvement in
convergence speed and a 3 X to 5% improvement in per-iteration
execution speed compared with state-of-the-art algorithms.

Index Terms—Sparse tensor decomposition, GPU CUDA
parallelization, stochastic gradient descent, tensor cores.
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1. INTRODUCTION

ULTI-ORDER data, represented as tensors, is pervasive
M in various domains, including social networks [1], [2],
recommender systems [3], [4], cryptography [5], bioinformat-
ics [6], and neuroscience [7], [8]. Tensors serve as higher-order
generalizations of matrices, capable of capturing complex rela-
tionships among multiple entities or variables. Leveraging ten-
sor decomposition techniques provides a powerful framework
for uncovering latent structures, reducing dimensionality, and
performing feature extraction [9]. Through this decomposition
process, a concise representation of the data is obtained, enabling
efficient storage, analysis, and interpretation. However, in many
real-world applications, tensors often exhibit sparsity, where a
significant number of elements are zero or missing. Sparsity is
a common characteristic in large-scale datasets due to inherent
constraints or limitations during data acquisition. For instance, in
social network analysis, connections between individuals may
be sparse, while in image analysis, pixels representing back-
ground regions are predominantly zero. The growing interest in
large-scale sparse tensor decomposition in recent years stems
from the exponential growth of data in the aforementioned
domains. Nonetheless, the analysis of such tensors poses unique
challenges due to their immense size, sparsity patterns, and
computational complexity.

Sparse tensors, in contrast to dense tensors, exhibit a sub-
stantial number of zero or missing entries, which are commonly
encountered in real-world applications due to the inherent spar-
sity of the underlying phenomena. The presence of sparsity in
tensors presents unique challenges and opportunities for data
analysis and computational algorithms. Traditional tensor de-
composition algorithms, originally designed for dense tensors,
face difficulties in effectively scaling to large-scale sparse ten-
sors due to the computational overhead involved in processing
numerous zero entries. Consequently, specialized algorithms
and techniques have been developed to leverage the sparsity
patterns and efficiently factorize sparse tensors. Furthermore,
sparse tensor decomposition techniques should possess the abil-
ity to accurately recover missing entries and handle inherent data
noise.

Tucker decomposition is a widely used technique for factor-
izing tensors into a core tensor and factor matrices, enabling the
analysis of complex relationships and latent structures within
tensors. There are two primary categories of methods used
for implementing Tucker decomposition. The first category is
based on Singular Value Decomposition (SVD) methods, such
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TABLE I
TABLE OF ACRONYMS
Acronym Full form
SVD Singular Value Decomposition
HOOI Higher Order Orthogonal Iteration
ALS Alternating Least Squares

CD Coordinate Descent

SGD Stochastic Gradient Descent
RMSE Root Mean Square Error
SOTA state-of-the-art

as High Order Singular Value Decomposition [10] and Higher
Order Orthogonal Iteration (HOOI) [11]. The second category
is comprised of gradient-based methods, including Alternating
Least Squares (ALS) [12], Coordinate Descent (CD) [13], and
Stochastic Gradient Descent (SGD) [14]. SVD-based methods
typically involve two essential computational steps: Tensor-
Time-Matrix-chain and SVD. Both of these steps are com-
putationally expensive and require significant memory usage.
Gradient-based methods, on the other hand, calculate the gradi-
ent of a parameter and update it using gradient descent or least
squares. Sparse Tucker decomposition extends this technique
to handle large-scale sparse tensors where a substantial number
of elements are zero or missing. For easy reference, Table I
summarizes the key aronyms utilized throughout the paper.
Parallel computing refers to the utilization of multiple
processing units or resources that work simultaneously to solve
computational problems more efficiently. By parallelizing the
Sparse Tucker decomposition process, the computational time
can be significantly reduced, enabling the analysis of larger and
more complex sparse tensors. These techniques leverage various
parallel computing architectures, including multi-core proces-
sors, distributed systems, and GPU accelerators, to achieve high-
performance factorization of large-scale sparse tensors. Several
parallel algorithms have been developed for Sparse Tucker
decomposition. ParTi! [15] is an HOOI-based parallel algorithm
designed for GPUs, which utilizes the Balanced Compressed
Sparse Fiber format to accelerate Tensor-Time-Matrix-chain
calculations. P-tucker [16] is an ALS-based parallel algorithm
for multi-core CPUs, reducing memory requirements for
updating factor matrices, but it incurs significant computational
overhead and exhibits unbalanced load distribution. Vest [17]
is a CD-based parallel algorithm for multi-core CPUs, which
prunes unimportant entries to reduce calculations, but the
pruning process itself is time-consuming. SGD_Tucker [18] is
an SGD-based parallel algorithm for multi-core GPUs, dividing
high-dimensional intermediate variables into smaller ones to
reduce memory overhead during updates. GTA [19] is an ALS-
based parallel algorithm designed for heterogeneous platforms
and serves as an extended version of P-Tucker. Bigtensor [20] is a
distributed Tucker decomposition algorithm designed to process
large-scale tensors efficiently across multiple computing nodes.
cuTucker [21] is an SGD-based parallel algorithm that runs on
multiple GPUs. cuFastTucker [21] is an SGD-based parallel
algorithm for multiple GPUs, decomposing the core tensor into
multiple core matrices to reduce space and computational over-
head. Building upon cuFastTucker [21], cuFasterTucker [22]
further reduces the computation of shared and reusable
intermediate variables, maximizing the utilization of GPU

The aforementioned algorithms are based on convex re-
laxations of non-convex optimization problems, transform-
ing them into convex optimization problems. While they can
achieve convergence in polynomial time, they often exhibit slow
convergence in practice [16], [17], [18], [21], [22]. In contrast,
local search algorithms have demonstrated fast convergence in
practical scenarios [23]. Many non-convex optimization prob-
lems are conjectured to possess favorable geometric properties,
wherein all local optima are (approximately) global optima [24],
[25]. Tensor factorization [14], matrix awareness [26], [27], and
matrix completion [28] exhibit good optimization landscapes,
where all locally optimal solutions are globally optimal. Sim-
ilarly, common low-rank matrix factorizations share a unified
optimization landscape, wherein all local optima are global
optima, and high-order saddle points are absent [29]. Moreover,
for an exact standard Tucker decomposition, all locally optimal
solutions are also globally optimal [30]. These problems can
be effectively addressed using fundamental optimization algo-
rithms such as stochastic gradient descent [14], [31], [32], [33].
From these observations, we infer that FastTucker decomposi-
tion also possesses a favorable optimization landscape, where
all local optima are (approximately) global optima, and can be
effectively solved using stochastic gradient descent.

Tensor Cores have emerged as specialized hardware com-
ponents that provide powerful acceleration for tensor compu-
tations. They leverage the parallelism and computational ca-
pabilities of modern GPUs to efficiently perform tensor op-
erations. Tensor Cores incorporate dedicated hardware units
and optimized algorithms, enabling rapid and precise tensor
computations. The introduction of Tensor Cores has revolu-
tionized the field of tensor computations, delivering significant
speedups in various applications, including deep neural network
training [34] and complex physical system simulations [35].
The efficient handling of large-scale tensor computations by
Tensor Cores has opened up new possibilities for addressing
challenging problems in machine learning [36], [37], [38], sci-
entific simulations [39], [40], and data analysis [41]. However,
not all algorithms are suitable for acceleration using Tensor
Cores.

In this paper, we introduce cuFastTuckerPlusTC, a paral-
lel sparse FastTucker decomposition algorithm designed for
the GPU platform with Tensor Cores. Unlike previous convex
optimization approaches, cuFastTuckerPlusTC utilizes a non-
convex stochastic optimization strategy. The algorithm con-
sists of two parts: simultaneous updates of all factor matrices
followed by simultaneous updates of all core matrices. Our
contributions can be summarized as follows:

1) Algorithm: The proposed method, cuFastTuckerPlusTC,
is a stochastic optimization strategy specifically devel-
oped for parallel sparse FastTucker decomposition on
the GPU platform using Tensor Cores. It addresses the
optimization problem by decomposing it into two non-
convex optimization subproblems, which are alternately
solved to achieve convergence. The algorithm exhibits
rapid convergence and effectively utilizes the capabil-
ities of Tensor Cores, resulting in faster performance
compared to existing state-of-the-art (SOTA) parallel
Tucker decomposition algorithms such as cuFastTucker
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TABLE II
TABLE OF SYMBOLS

Symbol Definition
X The input N-order tensor € RT1 X XTN
g The N-order core tensor € R/1 % xJn
Tiy o in (i1, ,in)th element of tensor X
The index set {1,--- , N}
Q The set of non-zero elements in X
1 The number of non-zero elements in
L4 The sample set from 2
A) The nth factor matrix € Rin*Jn
B™) The nth core matrix € R/n*xE
al(:): The iy, th row vector € R1X7n of A1)
b(’? The rth column vector € R/n*1 of B(")
o Outer product
X (n) n-Mode Tensor-Matrix product
© R Dot Product
* Hadamard Product
® R Hadamard Product

cuFasterTuckerTC are versions of cuFastTucker and cu-
FasterTucker respectively, accelerated by Tensor Cores,
their performance does not match that of cuFastTucker-
PlusTC.

2) Theory: In comparison to cuFastTucker, our proposed
cuFastTuckerPlusTC exhibits a smaller memory access
overhead of (M + R)S.N_ | J, and a computational
overhead of MR(S-N_, J,, + N(N — 2)) for key steps.
On the other hand, cuFasterTucker aims to reduce the
real-time computation of {C‘(;()n)’:}, which incurs an

overhead of MRS N,
memory access of {C\Ij(n) }, resulting in an overhead
of N(N — 1)R. In the case of cuFastTuckerPlusTC, the

calculation of {C\I,(n) } is performed in real-time using
Tensor Cores, without introducing any additional memory
access overhead. Furthermore, the increased running time
of cuFastTuckerPlusTC is lower than the additional mem-
ory access time required for {C yom, _}. These advantages
make cuFastTuckerPlusTC superior to cuFasterTucker in
terms of both computation and memory access.

3) Performance: The experimental results of cuFastTucker-
PlusTC demonstrate its superior convergence speed and
efficiency compared to the current SOTA algorithms.
Specifically, during the factor matrix update step, cu-
FastTuckerPlusTC achieves a speedup of 9x to 20x
compared to cuFastTucker and 2x to 3x compared to
cuFasterTucker. Similarly, during the core matrix update
step, cuFastTuckerPlusTC achieves a speedup of 27x to
31x compared to cuFastTucker and 2x to 6x compared
to cuFasterTucker. These significant speed improvements
indicate the effectiveness and efficiency of cuFastTucker-
PlusTC in terms of both computational time and memory
access.

The code for cuFastTuckerPlusTC, as utilized in this pa-
per, along with a toy dataset, is available for reproducibility
at https://github.com/ZixuanLi-China/cuFastTuckerPlus. The
subsequent sections of this paper are structured as follows.
Section II introduces the notations, definitions, and the problem

Jn, by introducing an additional
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to be addressed, along with its basic algorithm. Section III
presents our proposed method, which is a non-convex opti-
mization algorithm called FastTuckerPlus. Section IV describes
our proposed fine-grained parallel sparse Tucker algorithm,
cuFasterTuckerPlus, designed specifically for the GPU platform
with Tensor Cores. Section V showcases the experimental results
of cuFastTuckerPlusTC, comparing its performance to SOTA
algorithms. Finally, in Section VI, we summarize our work.

II. PRELIMINARIES

In this paper, Section II-A provides a comprehensive descrip-
tion of the notations used. Section II-B presents the fundamental
definitions necessary for understanding the concepts discussed.
The specific problem formulation is presented in Section II-C,
while the supplementary material provides a detailed explana-
tion of the proposed SGD-based convex optimization approach
used to address it. For easy reference, Table I summarizes the
key notations utilized throughout the paper.

A. Notations

The notation conventions used in this paper are as follows:
tensors are represented using bold Euler script letters (e.g., X),
matrices are denoted by bold uppercase letters (e.g., A), vectors
are represented using bold lowercase letters (e.g., @), and scalars
are denoted by regular lowercase or uppercase letters (e.g., k
and V). The elements of a tensor are specified by combining
the symbolic name of the tensor with the corresponding indices.
For instance, x;, .. ;, denotes the element located at indices
(41,...,1,) in the tensor X. Additionally, a; . refers to the i-th
row of matrix A, and b. ,. denotes the 7-th column of matrix B.

B. Basic Definitions

Definition 1 (n-Mode Tensor-Matrix Product): Given a
N-order tensor G € R7* %/~ and a matrix A € R»*Jn,
n-Mode Tensor-Matrix product projects G and A to a new
tensor (G X () A) € RIvtn-rxnxdutrx=Iv according to
the coordinates, where (G x

S Girduin i -

Definition 2 (R Kruskal Product): Given N matrices B(Y) €
RAE ... BN) € R/v*R | R Kruskal Product projects the N
matrices B(”) to a new N- order tensor g € R/ *IN where
G =31 6o o).

Definition 3 (R Dot Product): Given a matrix A € RM*E,
and a matrix B € R®*M R Dot Product projects A and B to
a new matrice (A ® B) € R™*! according to the coordinates,
where (A © B)yy1 = Q.. - b .

Definition 4 (Hadamard Product) Given a matrix A €
RM>N and a matrix B € RM>*¥  Hadamard Product projects
A and B to a new matrice (A * B) € RM*N according to the
coordinates, where (A * B, 1 = G * b

Definition 5 (R Hadamard Product): Given a matrix A €
RM>1 and a matrix B € R™*% Hadamard Product projects
A and B to a new matrice (A ® B) € RM*® according to the
coordinates, where (A ® B)., = A* B, ,

71) A)Jl X+ X Jrp—1 Xin Xjn«{»l X XN =
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C. Problem

Consider a sparse and incomplete N-order tensor X €
RIv<xIn et O denote the set of non-zero elements in X,
and |Q| represent the number of non-zero elements in €2. The
goal of Tensor Completion is to estimate the missing elements in
X based on the available non-zero elements in 2. Sparse Tucker
Decomposition is a widely used method for tensor completion,
which involves finding N factor matrices AW e Riv<h
AWN) ¢ RInxJy along with an N-order core tensor G €
R7t%*JN _ The aim is to approximate the elements z;, .
of the tensor X’ by Z;, . ;, given by

AN
1 N
v =G X an) X X agy) (1)
and the missing elements can be predicted using (1).
Sparse FastTucker Decomposition is a variation of the Tucker
Decomposition. It uses N core matrices B(") ¢ R/xFE ...
BW) ¢ R/~*E to approximate the core tensor G by:

R
Z 1) ) )

which can reduce the space and computational complexity. In
sum, the Sparse FastTucker decomposition is to find /N factor
matrices A € RO AWN) ¢ RIN*IN and N core
matrices B e RN>E  BW) ¢ RIN*E guch that

Lig,sin
R
= (Z b(}) o ob:(y)) X )a( ) X (2) X(N) a( )
r=1
1 N
(af, b)) - (afy b))
r=1
R N
=2 IL el ~wiin
r=1n=1
3
where C(™ = AW B(M ¢ RI=*E and CE:L?T is the (i, 7)th

element of the C™ . And we denote A, ..., AV and BM,

.. B using { A} and { B(")}, respectively. And so on for
other similar symbols. That is to solve the following non-convex
optimization problem:

argmin f (X, {A(n)}7 {B(n)}>
{AM} (B}
1 ~ 2
=5 2 Nin — Fin |
Tiq,..., iy EX
(n) )”B (n) 2
ZHA 1% + ZHB 2 @
n=1

which adds regularization terms to prevent over fitting. Both A o
and A p are hyperparameters.

III. PROPOSED METHOD

In this section, we propose FastTuckerPlus, an SGD-based
non-convex optimization algorithm. FastTuckerPlus is a local
search algorithm that demonstrates excellent convergence prop-
erties. It offers advantages in terms of computational overhead
and memory access overhead. Moreover, it exhibits strong
adaptability, allowing it to leverage the performance of Tensor
Cores effectively. We provide a comprehensive description of the
FastTuckerPlus algorithm in Section III-A, highlighting its key
details. To optimize the calculation process for Tensor Cores
and maximize their performance, we introduce matrixization
in Section III-B. Lastly, we conduct a complexity analysis of
FastTuckerPlus in the supplementary material.

A. A Non-Convex SGD-Based Sparse FastTucker
Decomposition Algorithm

Our proposed FastTuckerPlus algorithm alternately solves
two non-convex optimization objectives

arg min f ({af;:a):}‘wilv“ail\” {a"fj,)}7 {B("l)})

{aly))
1 ~ (n)
= 5”»%111\, - lezNHF Z || a; . ()
and
(n) ) (n) (n)
avgmin f ({B™}[a,....ix {al} {B™)})
{B()} h
1 R AB o=
= inil,...,iN = Tiy,..., ZNH?? QBZHB( )”2 (6)
n=1

Although the above two optimization objectives are non-convex,
they exhibit a relatively simple optimization landscape, allowing
them to be effectively solved using local search methods by

1 1 1 L
o2 2 (O 2l
N N N T N
a7(;N7): — al(.N,): +74 (eil 71Nd§ )B(N) Aaz('N,):)
)
for optimization objective (5) and
B(l) = B(l) +’YB (eil Lin @ 51) d( ) )\,BB(l))
N N
BW) « BW) 4p (6 iva EN) ) )»BB(N))
®)
for optimization objective (6), where e;, . iy = iy, ix —

~

sin- And in our approach, we define d( ) as the notation

xll .....
for the product of c( ) o (n711.) * cg:jll) -k c( ) for
the element z;, ._;, . For any given element z;, . ;, € Q the

updates of {ai:i } in (7) are independent of each other. Similarly,
the updates of { B("™)} in (8) are also independent of each other.
This implies that only one element needs to be selected for each
update. However, the subset W can still be selected from €2, and
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Algorithm 1: Sparse FastTuckerPlus Algorithm.

Input: Sparse tensor X € R1>*I~ 'ranks {J,,} and R,
learning rates v 4 and yp, regularization parameters A 4
and A g, and iterations 7.
Output: Factor matrices { A(™)} and core matrices
{B™)}.
1: Initialize factor matrices { A(™) € R»*/»} and core
matrices { B(") € R/»*1},

for ¢ from 1 to 7" do

for randomly takes ¥ from (2 do

Calculate {c n) L)

for n from 1 to N do
Update al(.m): by rule (7).
end for

end for

9:  for randomly takes ¥ from (2 do

10:  Calculate {c ™) T
11: for n from 1 to N do

12: Update B(™) by rule (8).
13: end for

14:  end for

15: end for

the updates can be performed one by one according to the ele-
ments in . Furthermore, for a given «;, ., , its corresponding

{ cgj)} are the same. Therefore, the { cgf)} can be precalculated
to avoid redundant computations when calculating {dE:)} The
unified update of {aﬁjj)} or { B(")} ensures that {cgf)} follows
the updates. Therefore, maintaining {C(")} in memory does not
reduce the computational overhead. The Sparse FastTuckerPlus
Algorithm is described in Algorithm 1.

In Algorithm 1, when updating {az(-:)} or {B(™} using a
single U with M selected samples, the following data need to
be read from memory: a matrix set consisting of /N matrices of
size .J,, x R ({B(}) and a matrix set consisting of N matri-

ces of size M x J, ({AE;()n) }. A total of (M + R)S°N_ 7,

parameters are read from memory. And {Cq;m) _} requires

n=1

|| anl Jp R multiplications. After calculating all {C E;()n) s
they are shared by all {D("()n) .} during the computation of

n)
(D50,
in the entire process is M R(Zn:1

_}. Hence, the total number of required multiplications
Jn + N(N —2)).

B. Matrixization

To leverage the computational capabilities of Tensor Cores,
we can express the update rules (7) and (8) in the form of matrix
calculations. We randomly select a subset ¥ from €2 containing
M elements and represent it as a matrix Xy € RM>1 where
ZTm,1 corresponds to the m-th element in ¥. We use U™ o
denote the index set of elements in W for the n-th order, and ¥ En)
to denote the i-th index in ¥(™). To form the factor sub-matrix

Agl()n ) .» weextract the factor vector with index set U™ from the

factor matrix A(™). Then, we define Cf;(n) = A(”) oy B ¢
RM>*E where the (\IIE"), r)-th element . ()n) afy()") b;(ff«)
of CEI/(L> . Similarly to d("):, we use D‘(M)n) € RM*E o denote
051}21) -+ C n(ﬂ1z) Cfﬁﬁ)m ng)w

Then update rules (7) and (8) can be expressed as follows:

= 1
Af;()l) — AEI,()U + 74 ((qu - Xy)® (Dfm)l)}:
BW') 1440, )
AEyIYJ)w « A\I;(N) + 74 ((anf - Xy)® (DEPIYJ)w
BM') 5,400, )
N ©)
where X ¢ = A$<)1> ® (B! )D$<)1) ) € RY*! and
< m '
BW « BW 4 ~p ((Xq/ - Xu) ® Ay, :)
D$<)1> *)‘BB(I))
_ T
BWN) « BWV) 4 4 (((Xxp - Xy)® AEIJZYI)W )
P
(10)
where X¢ = Cfljl()l) © DEP()U € RM>1 And we use EEP()M
€ RM*/n to denote (X ¢ — X‘y) ® AEII]\(IJ)V) . The matrix calcu-

lation process that can be accelerated by Tensor Cores is as fol-

lows: AU, B, DY) B and Ef;?n) ‘DY), We
also describe, in the supplementary material, how cuFastTucker,
cuFasterTuckerCOQ, and cuFasterTucker are reformulated into

matrix operations to enable acceleration using Tensor Cores.

IV. CUFASTTUCKERPLUSTC oN GPU

We present the implementation of our proposed cuFastTucker-
PlusTC algorithm on GPUs with Tensor Cores. In Section IV-A,
we provide a brief introduction to Tensor Cores. We also explain
how to optimize data partitioning to maximize the utilization
of Tensor Cores in Section IV-B. Our algorithm is designed to
leverage two levels of parallelism: warp parallelism, discussed in
Section I'V-C, and block parallelism, explained in Section IV-D.
Finally, in Section IV-E, we summarize our algorithm and high-
light the key techniques used in its implementation.

A. Tensor Core

Tensor Cores are specialized processing cores in NVIDIA
GPUs that excel in performing matrix operations. Unlike CUDA
Cores, which are more general-purpose, Tensor Cores are specif-
ically designed for high-performance matrix computations. Uti-
lizing Tensor Cores can significantly enhance the peak through-
put compared to using CUDA Cores for matrix operations. Ten-
sor Cores perform a fused multiply-add operation. They multiply
two 4 x 4 half-precision float matrices, add the resulttoa 4 x 4
half-precision or single-precision matrix, and produce anew 4 x
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4 half-precision or single-precision matrix. NVIDIA refers to
these operations performed by Tensor Cores as mixed-precision
math because the input matrices are in half-precision, but the
product can be in full-precision. CUDA provides the Warp-level
Matrix Multiply and Accumulate (WMMA) API, which allows
developers to leverage Tensor Cores on the GPU. Through the
WMMA API, developers can calculate D = A - B + C within
a warp, where A, B, C, and D can also be tiles of larger
matrices. All threads within the warp cooperate to perform their
respective matrix multiply-add operations. The size limit of
matrices in WMMA is M x N x K, where A € RM*K B ¢
RN*K C e RM*N and D € RM*N, Currently, CUDA sup-
ports matrix multiplication and addition operations of various
numerical precisions, including 16 x 16 x 16 half-precision,
16 x 16 x 16 single-precision, and 8 x 8 x 4 double-precision,
etc. For larger matrices, the matrix multiply-add operations can
be divided into multiple tile-wise operations of suitable sizes.
In our paper, without loss of generality, we utilize 16 x 16 x 16
single-precision matrix multiply-add operations.

B. Matrix Partition

To maximize performance and efficiency, we divide
{AE;()H) .} and {B (")} into multiple tiles of submatrices with
asize of 16 x 16. Any remaining entries are padded with zeros.
It is worth noting that the best performance can be achieved
when M, R and {J,} are all multiples of 16. For the sake of
convenience and to save memory costs, we set M to be 16.
Let{J, = 16P,}, and R = 16Q). As aresult, {AE;()} can be
divided into {1 x P,} tiles, and {B(} can be divided into
{P, x Q} tiles. Correspondingly, {D'™

W (n)
{1 x Q} tiles, and {E{") )} are divided into {1 x P, } tiles,
respectively.

}, are divided into

In our notation, (A( )

n
\I/("),:
()
of A\P(n)’:

of B, The computation of (A(") B™), , is given by

NIOR
Z;:le(A(n) )’4)1)pn(B(n))pmq, where (ASI:L(L)):B(TL))L(] rep-

W(n)
resents the (1,¢)-th tile of the matrix product A B,

W)
T
Similarly, the computations DSI:L()M . B™ and Ef;()m -B™
follow the same pattern. Please note that in the paper, we have
omitted explicit mention of matrix partitioning for brevity and

clarity of the expressions.

)1,p,,» represents the (1, p,)-th tile
. Similarly, (B(™)),, represents the (p,,q)-th tile

C. Warp Parallelization

The warp serves as the scheduling unit in NVIDIA GPUs,
with all threads in a warp executing the same instructions.
In the current mainstream NVIDIA GPU architecture, a warp
consists of 32 threads. The GPU assigns 32 consecutive threads
from a block to form a warp. Even if the number of remaining
threads is less than 32, they are still organized into a warp,
leaving the excess threads idle. Therefore, proper task distri-
bution is crucial to avoid idle threads within a warp. In the
cuFastTuckerPlusTC framework, we utilize a warp to process

a specific . When updating the factor matrices, the warp

updates the {AE;()W)} This warp handles a tile of size 16 x 16

in each iteration. The calculations involving {AE;&) :B(")}
and {DE;(),L) :B(")T} can be performed using either CUDA

Cores or Tensor Cores. In the case of Tensor Cores, a warp
is responsible for multiplying two tiles of size 16 x 16. The

warp computes the elements (A" )1.p,, (BM™), ., and then

wn),
7 n P, Y n
computes (A7, B™); ,=Y0"_[(AS)) )15, (B™),, 4
This process completes the calculation of {Agﬁ)n) B ()1, The

calculations involving {DE;()M B (")T} follow a similar pattern.

For CUDA Cores, we divide a warp into two workers, with each
worker consisting of 16 threads. When multiplying two tiles of
size 16 x 16, one worker calculates the upper half (8 x 16) of
the resulting tile, while the other worker computes the lower
half (8 x 16) of the tile. Other tile operations with a size of
16 x 16, which do not involve matrix multiplication, are also
performed using CUDA Cores. Similar to matrix multiplication,
each worker is responsible for half of the tile. When updating
the core matrices, the usage of CUDA Cores and Tensor Cores
aligns with the update process for the factor matrices. The
distinction is that we do not update {B(™)}, within the warp.
Instead, we accumulate the gradients of { B} for all ¥ in Q
and subsequently update { B 1.

D. Block Parallelization

A block consists of multiple threads that can synchronize
and share shared memory, enabling communication between
threads. When the number of threads in a block is a multiple
of 32, meaning the block consists of multiple warps, all threads
can be fully utilized without any idle threads. In cuFastTucker-
PlusTC, since each ¥ can be processed independently and has
the same number of elements, we evenly distribute all sampled
U to different warps to achieve load balancing. In hardware, all
threads within a block do not execute in parallel simultaneously.
Instead, a block is divided into multiple warps allocated to the
same Streaming Multiprocessor and queued for execution on
the Streaming Processors. The GPU’s hardware architecture
allows a large number of warps to reside in the SM concurrently.
When a warp encounters a wait condition during execution, such
as memory read and write delays, the Warp Scheduler swiftly
switches to the next eligible warp for execution to maintain high
instruction throughput. This architectural design is a fundamen-
tal characteristic of GPUs, where numerous warps are employed
to hide latency. The abundance of warps enables the GPU to
achieve exceptional data throughput.

E. Overview

cuFastTuckerPlusTC is divided into two main parts: updating
the factor matrices and updating the core matrices, as described
in Algorithms 2 and 3, respectively. In these algorithms, we pri-
oritize storing the parameters in the fastest memory available and
maximizing memory reuse. We ensure that shared memory and
registers are not excessively occupied, allowing for a sufficient
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Algorithm 2: Update Factor Matrices of cuFastTucker-
PlusTC.

G{parameter}: parameters in global memory.
R{parameter}: parameters in register memory.

Input: Sparse tensor X € R{>*I~ initialized factor
matrices { A(™) € R/»*/»} and core matrices { B(™) €
R7»*F} learning rate -y 4, regularization parameter X 4.
Output: Factor matrices { A},

1: for n from 1 to N do

2: R{BM} <« G{B™}
3: end for
4: for Warp Parallelization do
5: for randomly take ¥ from (2 do
6: for n from 1 to N do
7: R{DYY, } 1
8: end for ’
9: for n from 1to N do
10: R{A‘Mn) }«+ S{A (n) }eg{A\P(n) 3
11: S{C\I;(n) J < R{C \pm),;} «~R{A q,(n),:}
R{B™} by Tensor Cores
12: for k from 1 to IV and k£ # n do
13: R{DE;()R),;} — R{D$€<)k>7; * S{Csﬁ?rL),;}
14: end for
15: end for
16: for n from 1 to N do
17: R{D), }+ S{DY), } «R{DY), }
18 S{B™WD), }« R{B™WD), }+«
R{B™} . R{D‘(;(),:) _} by Tensor Cores
19: end for ) .
200 R{Xu}+ S{AY), } o S{BYDY),
-G{X v}
21: for n from 1to N do -
22: G{AG), 1 S{AD), Y —7a - (R{Xu} ®
S{D), B™') 14 S{AL), )
23: end for
24:  end for
25: end for

number of active thread blocks during runtime to enhance paral-
lel efficiency. Furthermore, we strive to minimize unnecessary
calculations throughout the computation process. Additionally,
cuFastTuckerPlusTC utilizes a load-balanced sampling method.
In summary, the main optimization techniques employed by
cuFastTuckerPlusTC are as follows:

Memory Coalescing: Global Memory access latency on GPUs
can be a significant performance bottleneck, often taking hun-
dreds of clock cycles. To mitigate this issue, GPU architec-
tures employ parallelization techniques to enhance memory
access throughput. When a specific location in global mem-
ory is accessed, a sequence of consecutive locations that in-
cludes the target location is fetched in a single operation.
This approach leverages the fact that threads within a warp
execute the same instructions simultaneously. In cuFastTuck-
erPlusTC, each warp is assigned the responsibility of handling

Algorithm 3: Update Core Matrices of cuFastTucker-

PlusTC.
G{parameter}: parameters in global memory.
R{parameter}: parameters in register memory.
Grad(B™): the gradient of B(™),
Input: Sparse tensor X € R{1*In initialized factor
matrices { A(™) € R/»*/»} and core matrices { B(™) €
R7»*E1 learning rate vp, regularization parameter A .
Output: Core matrices { B(")}.
1: for n from 1 to N do

R{B™} « G{B™}

3: G{Grad(B™)} <0

4: end for

5: for Warp Parallelization do

6

7

8

for randomly take ¥ from €2 do
for n from 1 to NV do
: R{Grad(B™)} + 0
9: R{D"

q,(n),:} +—1
10: end for
11: for n fromTl to N do
12: R{A("()n) Jes{AD), y g{A%_:}
13: s{cy (n)} «R{CY), } —R{AY), |
R{B™} by Tensor Cores
14: for k from 1to N and k ;é n do
15: R{DG),, } « R{DYG), }+S{CY), }
16: end for
17: end for

— T
18 R{Xu} < S{CYL } O R{DYL, }- G{Xu}
19: for n from 1 to N do

20: R{DY), }+ S{DY),, }<—R{D$?n)ﬁ}

2 R(EYL ) e SIBY), ) R{Xu) o
S{AG,)

22: S{E( (n), D(n<)n> e R{E( (n), D(nw g
R{E\(;()n),;} : R{D‘(ﬁl)#} by Tensor Cores

23: R{Grad(B™)} + R{Grad(B™)} +
S{ES), DY, )

24: end for

25:  end for

26: for n from 1 to N do

27:  G{Grad(B™)} < G{Grad(B"™)} +
R{Grad(B™)}

28:  end for

29: end for

30: for n from 1 to N do

31: G{B™} « G{B™} —yp - (G{Grad(B™) /|Q|
+ip - G{BM})

32: end for

one or more tiles. To optimize memory access patterns, { A}
and {B(™} are stored in global memory in row-major order
and column-major order, respectively. This arrangement en-
sures that when a warp reads or writes {A oy }or {B(™)},
respectively, it minimizes the number of memory requests
required.
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Warp Shuffle: The Warp Shuffle instruction is a feature that
enables direct data exchange between threads within the same
warp. It utilizes dedicated hardware, has low latency, and does
not require additional memory space. Compared to using shared
memory for data exchange, utilizing Warp Shuffle is more effi-
cient. Furthermore, the reduced shared memory usage allows for
allocating the saved resources to the on-chip L1 cache, enhanc-
ing overall performance. However, it’s important to note that data
exchange between different warps within the same block still
necessitates the use of shared memory. In cuFastTuckerPlusTC,
we leverage the Warp Shuffle instruction for matrix multipli-
cation and dot product calculations. For example, we utilize it

in expressions such as A(l()1> NO (B(l)D(l()l) ) € RM*1 (line

20 of Algorithm 2), C{),, @ D), (line 18 of Algorithm 3),
(Xy — Xy)® (DY), B (line 22 of Algorithm 2) and
(Xy— Xg)® AEP”(ZL) (line 21 of Algorithm 3).

WMMA API: The utilization of the WMMA API enables us
to leverage Tensor Cores for performing matrix multiplication
computations within the warp. Initially, the matrices are read
from global memory or shared memory into the registers of
the warp. However, it’s important to note that access to the
entire matrix can only be made at the warp level, and accessing
specific elements within the matrix is not possible at the thread
level. Once the Tensor Cores complete their calculations, the
results stored in registers can be written back to global memory
or shared memory. In cuFastTuckerPlusTC, we leverage Tensor

Cores to compute the following matrix multiplications: A MO

B™ (hne 11 of Algorithm 2 and line 13 of Algorithm 3),
B("> - DY) )" (line 18 of Algorithm 2) and Ef% . B™
(line 22 of Algorlthm 3). These matrix multiplication operations
are efficiently performed using the Tensor Cores. However, it’s
worth mentioning that these operations can also be carried out
using Warp Shuffle with CUDA Cores. When employing CUDA
Cores for tile multiplication, two workers are responsible for
calculating the upper and lower parts of the tile, and each worker
computes a dot product at a time.

Loop Unrolling: Loop unrolling is an instruction-level opti-
mization technique that enhances code performance by sacrific-
ing programming complexity. By unrolling loops in CUDA, we
can reduce instruction costs and introduce more independently
dispatched instructions. This approach increases the number
of concurrent operations in the pipeline, leading to improved
instruction and memory bandwidth. In our implementation, we
utilize the #pragma unroll directive to perform loop unrolling,
which doesn’t significantly increase the program’s complexity.
Additionally, it’s important to note that CUDA does not support
register arrays, but fixed-length short arrays can be stored in
registers. When an array is too long or has an indeterminate
index, the compiler may store it in global memory. However,
by unrolling the loop, we can eliminate the indeterminate index
of the array, allowing the compiler to allocate the fixed-length
short array into registers. This optimization technique enables
faster access to arrays stored in registers rather than relying on
shared memory for certain computational tasks.

Shared Memory: Shared memory is a high-bandwidth and
low-latency on-chip memory located on the SM. It is allocated

in blocks and shared by all threads within a block, persisting
throughout the lifetime of the block. Shared memory serves
multiple purposes, including reducing access to global memory
by storing frequently accessed parameters (hotspot parameters)
and facilitating communication among threads in different warps
within the same block. In cuFastTuckerPlusTC, we allocate

exclusive shared memory for each warp in the block. This shared
(n)

memory is used to store various parameters, such as A\P(n)

10 of Algorithm 2 and line 12 of Algorithm 3), C’ \I/ (n) (line 11
of Algorithm 2 and line 13 of Algorithm 3), D \I, (n) (line 17 of
Algorithm 2 and line 20 of Algorlthm 3), B(™ D‘P(m (line 18 of

Algorithm 2) and EEIJ”(),? . ql(ﬂ) (line 22 of Algorithm 3). These
parameters are utilized as inputs and outputs of Tensor Cores.
As these parameters are shared across different time steps, they
do not consume a significant amount of shared memory.
Register: Registers are the fastest memory in the GPU, offer-
ing quick access to data for calculations, reading, and writing.
It is crucial to allocate parameters efficiently to registers to
maximize performance while ensuring enough warps survive
in the Streaming Multiprocessor (SM) to maintain high data
throughput. In cuFastTuckerPlusTC, we prioritize frequently
used parameters and store them in registers without occupying
excessive register space Intermediate variables and the results
of computing D" \I/(”) (lines 7, 13 of Algorithm 2 and lines 9,
15 of Algorithm 3) are stored in registers. We also use registers
to store and accumulate the gradient of B("™) (line 8 of Algo-
rithm 3), which is later written to global memory to minimize
global memory writes. Furthermore, we utilize registers with
Tensor Cores to store ASpm) (line 10 of Algorithm 2 and line
12 of Algorithm 3), B(™ (line 2 of Algorithm 2 and line 2
of Algorithm 3) and D‘(;()n)y:. Correspondingly, the calculated

(line

Cf;(n) (line 11 of Algorithm 2 and line 13 of Algorithm 3),
B )Dglm) (line 18 of Algorithm 2) and EE;()M DEII(),L) (line

22 of Algorithm 3) are also stored in registers with Tensor Cores.
Additionally, other intermediate processes within the calculation
process are performed in registers to take advantage of their
speed and minimize memory access.

Read-only Data Cache: In chastTuckerPlusTC, we take
advantage of the fact that the values of {A\P(”) _} remain un-
changed between the warp reading and updating stages. To
optimize memory access and reduce shared memory usage,
we store {A("()n) } (line 10 of Algorithm 2 and line 12 of
Algorithm 3) in the read-only cache. The read-only cache, also
known as the constant cache, is a specialized cache in NVIDIA
GPUs designed for storing read-only data. By storing { Al (n) N
in the read-only cache, we enable faster memory access for
the warp reading stage. To optimize read-only memory access,
we utilize the __ldg modifier in NVIDIA GPUs. The __ldg
modifier is a CUDA compiler intrinsic that hints the compiler
to use the read-only cache for memory loads. It allows for more
efficient and optimized access to read-only memory, improving
performance in scenarios where the data remains unchanged. By
leveraging the read-only cache and utilizing the __ldg modifier,
cuFastTuckerPlusTC enhances memory access efficiency when
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reading {Agl()n) _} contributing to overall performance optimiza-
tion. :

V. EXPERIMENTS

We present experimental results to answer the following
questions.

1) Convergence of the algorithms: Does the non-convex
SGD algorithm cuFastTuckerPlusTC exhibit superior con-
vergence properties compared to convex optimization al-
gorithms?

2) Accuracy and Runtime under Varying Numerical Preci-
sions: What is the impact of different numerical precisions
on the accuracy and running time of cuFastTuckerPlusTC?

3) Single Iteration Running Time: Compared with convex
optimization SGD algorithms, does the non-convex SGD
algorithm cuFastTuckerPlusTC require less computation
time per iteration?

4) Memory Access Overhead: Compared with convex op-
timization SGD algorithms, does the non-convex SGD
algorithm cuFastTuckerPlusTC offer advantages in terms
of memory access overhead?

5) Tensor Cores’ Impact: How does cuFastTuckerPlusTC’s
acceleration performance fare when utilizing Tensor
Cores? Additionally, what is the acceleration performance
of other algorithms when employing Tensor Cores?

6) Calculation or Storage: Which approach yields superior
performance: precomputing and storing the intermediate
matrices {C(™} in advance, or computing {051:%71
temporarily when needed?

We provide a detailed description of the datasets and experi-
mental settings in Section V-A. The questions posed in this paper
are addressed as follows: the convergence of the algorithms
is investigated in Section V-B, the accuracy and runtime of
cuFastTuckerPlusTC under various numerical precisions are
analyzed in Section V-C, the single iteration running time of
the algorithms is analyzed in Section V-D, the memory access
overhead is evaluated in Section V-E, the effect of the Tensor
Cores on cuFastTuckerPlusTC and other algorithms is examined
in Section V-F, the choice between calculation and storage
approaches is discussed in Section V-G.

A. Experimental Settings

1) Datasets: We utilize a combination of Real-World
datasets and synthetic datasets to evaluate the conver-
gence and performance of the algorithms. For Real-World
datasets, we evaluate our method on eight widely used
sparse tensor datasets, encompassing four recommenda-
tion system datasets, two knowledge graph datasets, and
two text processing datasets. The recommendation system
datasets include: Amazon' [42], Netflix? , Goodreads?

[43], [44] and Yahoo!* . The knowledge graph datasets

https://nijianmo.github.io/amazon/index.html
https://www.netflixprize.com/
https://mengtingwan.github.io/data/goodreads
https://webscope.sandbox.yahoo.com/

2)

3)

include: Nell-1°  [45] and Nell-2°  [45]. And the text
processing datasets include: Amazon-Reviews 7 [46]
and Reddit-2015%  [47]. All datasets are divided into a
trainset, denoted as €2, and a testset, denoted as I". We
train the parameters on the trainset {2 and evaluate their
performance on the testset I'. For further details on the
characteristics of the real-world datasets, please refer to
Tables III. Real-world datasets are employed to evaluate
the algorithm’s capability and efficiency in processing
large-scale sparse tensors in applications such as recom-
mender systems, knowledge graphs, and text processing.
In addition to the Real-World datasets, we construct syn-
thetic datasets consisting of 8 sparse tensors with orders
ranging from 3 to 10. Each tensor contains a total of
100,000,000 elements, with each dimension having a size
of 10,000. Synthetic datasets are employed to evaluate
the algorithm’s capability and efficiency in processing
high-order sparse tensors.

Contrasting algorithms: In this paper, we com-
pare the proposed cuFastTuckerPlusTC algorithm with
sparse Tucker decomposition algorithms, including P-
Tucker [16], Vest [17], SGD_Tucker [18], ParTi! [15],
GTA [19], Bigtensor [20] and cuTucker [21]. In addi-
tion, we evaluate cuFastTuckerPlusTC against state-of-
the-art sparse FastTucker decomposition algorithms, such
as cuFastTucker [21], cuFasterTucker [22], and cuFaster-
TuckerCOO [22]. To enable a fair comparison, we im-
plemented three Tensor Core—accelerated variants: cu-
FastTuckerTC, cuFasterTuckerTC, and cuFasterTucker-
COOTC, which enhance cuFastTucker, cuFasterTucker,
and cuFasterTuckerCOQO, respectively. Similarly, we im-
plemented the FastTuckerPlus algorithm (cuFastTucker-
Plus) using CUDA cores.

Environment: The implementation of cuFastTucker-
Plus/cuFastTuckerPlusTC is done in C/C++ using CUDA.
The experiments for P-Tucker, Vest, SGD_Tucker were
conducted on an Intel Core i7-12700 K CPU (5.00 GHz,
20 threads) with 64 GB RAM. In contrast, the ex-
periments for ParTi!, cuTucker, cuFastTucker, cuFaster-
Tucker, cuFasterTuckerCOQO, cuFastTuckerPlus, cuFast-
TuckerTC, cuFasterTuckerTC, cuFasterTuckerCOOTC,
and cuFastTuckerPlusTC were conducted on an NVIDIA
GeForce RTX 3080Ti GPU, which is equipped with 10,240
CUDA cores, 320 Tensor Cores, and 12 GB of graph-
ics memory. The GTA and Bigtensor algorithms were
evaluated on a heterogeneous platform consisting of the
above CPU and GPU. In terms of numerical precision,
P-Tucker, Vest, SGD_Tucker, and ParTi! utilize double-
precision, while GTA and BigTensor use single-precision.
The computational platforms and precision of these al-
gorithms are constrained by their available open-source
implementations. The Intel Core i7-12700 K and NVIDIA

5 https:/frostt.io/tensors/nell- 1/

6 https:/frostt.io/tensors/nell-2/

7 https:/frostt.io/tensors/amazon-reviews/
8 https:/frostt.io/tensors/reddit-2015/
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TABLE III
REAL-WORLD DATASETS

Amazon Netflix Goodreads Yahoo! Nell-1 Nell-2 Reddit-2015 Amazon-Reviews
I 2, 628, 801 480, 189 816, 371 1, 000, 990 2,902, 330 12, 092 8, 211, 298 4, 821, 207
Iz 4, 529, 425 17, 770 2, 325, 541 624, 961 2, 143, 368 9, 184 176, 962 1,774, 269
I3 7,813 2,182 4,774 3,075 25, 495, 389 28, 818 8, 116, 559 1, 805, 187
1 111, 240, 135 99, 072, 112 103, 500, 736 250, 272, 286 142, 166, 596 76, 109, 392 4, 640, 599, 395 1, 724, 388, 676
[T 1, 135, 628 1, 408, 395 1, 050, 813 2, 527, 989 1, 432, 956 770, 027 46, 874, 686 17, 420, 342
Max 5 5 5 5 6.102893 6.542442 7.238994 4.929572
Min 1 1 1 0.025 1 1 1 1
} Amazon o Netflix Goodreads Yahoo!
- SGD_Tucker ¥ cuFasterTuckerCOO » < P—Tucker cuFastTucker ' e P—Tucker cuFastTucker 14 P~ Tucker ¥ cuFasterTuckerCOO
1.06 —— GTA —e— cuFasterTucker Lo/Tr, o SGD_Tucker  —v— cuFasterTuckerCOO - SGD_Tucker  —*— cuFasterTuckerCOO \( * SGD_Tucker  —e— cuFasterTucker
o +— cuTucker 4 cuFastTuckerPlus o —4— GTA —e— cuFasterTucker [ 095 — GTA +— cuFasterTucker o | cuTucker 4~ cuFastTuckerPlus
Hoos cuFastTucker ~ —<— cuFastTuckerPlusTC 7] —+— Bigtensor 4~ cuFastTuckerPlus 7! —— Bigtensor 4 cuFastTuckerPlus [ZI cuFastTucker ~ —=— cuFastTuckerPlusTC
E 104 . _“‘_mm.“_“‘(.'-"“‘ E 1.05 . :cuTuckcr -~ cuFastTuckerPlusTC E - .\.1 * cuTucker —%— cuFastTuckerPlusTC E b W
7 2 % 7 R
o8 10 % 8 i et ST et V..
ﬁlm = \‘«wﬂ‘ |“-’“ : Eo ’»‘;}{
Lo ” o SRR “““‘ff&mﬂﬂﬂmwmm
! * Iters * * Iters * B Iters *
(a) RMSE on Amazon (b) RMSE on Netflix (¢) RMSE on Goodreads (d) RMSE on Yahoo!
Nell-1 Nell-2 Reddit-2015 Amazon-Reviews
- SGD_Tucker 0368 >~ SGD_Tucker ~ —¥— cuFasterTuckerCOO 027 o cuTucker 1 o cuTucker
o s cuTucker . *— cuTucker —e— cuFasterTucker \ cuFastTucker 0170 cuFastTucker
cuFastTucker 0360 cuFastTucker ~ —4— cuFastTuckerPlus 026 +— cuFastTuckerPlus ¥ cuFasterTucke
- \ R 8T Bigenor < cuFastTuckerPlusTC 2 " ettt 2 D
= o R - cuFastTuckerPlusTC = oassl | “c\ ™ = s S o - cuFastTuckerPlusTC
2 2 Mt e, B 2
E 0.190 [lm) a0 «::::'m 'X é 024 é
o S o o o0 .
o o Fetsrrrrammonnrs: Rt
! B Iters * * Iters * * Iters * * Iters *
(e) RMSE on Nell-1 (f) RMSE on Nell-2 (g) RMSE on Reddit-2015 (h) RMSE on Amazon-Reviews
Fig. 1. The convergence curves of cuFastTuckerPlusTC and other algorithms on the Real-World datasets.

RTX 3080 Ti represent the same generation of high-end
hardware and are highly compatible within heterogeneous
computing systems. Using this combination as the test
platform ensures a relatively fair comparison. Due to
hardware limitations, the algorithm can access up to 64 GB
of CPU memory and 16 GB of GPU memory. Additionally,
we restrict the execution time of a single iteration to
within one hour. Unless otherwise specified, GPU-based
algorithms such as cuTucker, cuFastTucker, cuFaster-
Tucker, cuFasterTuckerCOO, and cuFastTuckerPlus are
executed in single-precision, whereas cuFastTuckerTC,
cuFasterTuckerTC, cuFasterTuckerCOOTC, and cuFast-
TuckerPlusTC utilize Tensor Cores with 16 x 16 x 16
single-precision matrix operations. All algorithms utilize
optimal parameters and are executed without interference
from other tasks.

B. Convergence of the Algorithms

We utilize the Root Mean Square Error (RMSE) on the test
datasets I' to evaluate the accuracy of all algorithms. To ensure
fairness, all methods are initialized with the same random seed,
and RMSE values are recorded after each iteration. For consis-
tency, we set the Tucker core sizes to {.J,, = 16} and the rank

to R

= 64 across all algorithms. Each algorithm is executed

for a total of 50 iterations. Fig. 1 presents the convergence
curves of cuFastTuckerPlusTC and other baseline algorithms
on the real-world datasets. Table IV reports the time required

for cuFastTuckerPlusTC and other baseline algorithms to reach
the baseline RMSE on real-world datasets (subject to hardware
constraints: 12 GB of GPU memory, 64 GB of RAM, and a
one-hour time limit). The baseline test RMSE for each dataset
are as follows: Amazon: 1.02, Netflix: 0.95, Goodreads: 0.85,
Yahoo!: 1.20, NELL-1: 0.189, NELL-2: 0.35, Reddit-2015:
0.23, Amazon-Reviews: 0.16. It is important to note that only
algorithms which converge to the baseline RMSE are included
in Fig. 1. Notably, cuFastTuckerPlus and cuFastTuckerPlusTC
exhibit faster convergence (Table IV) compared to the other
algorithms, while also achieving greater accuracy (Fig. 1).
Compared with baseline algorithms, cuFastTuckerPlus achieves
speedups ranging from 2x to 8 x on real-world datasets. These
results indicate that Sparse FastTucker decomposition benefits
from a simple convergence landscapes, and the non-convex
optimization-based SGD approach leads to faster convergence.
While our approach uses single-precision arithmetic to improve
computational efficiency, some of the compared baselines adopt
double precision. Although this difference could lead to minor
numerical discrepancies, we observed that the impact on the
overall convergence trend and reconstruction quality is negligi-
ble in our experiments.

C. Accuracy and Running Time in Various Numerical

Precisions

The running time and accuracy of cuFastTuckerPlusTC are
influenced by the choice of numerical precision. Under the
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TABLE IV
TIME (IN SECONDS) REQUIRED FOR SPARSE TUCKER DECOMPOSITION ALGORITHMS TO CONVERGE TO THE BENCHMARK RMSE ON THE REAL-WORLD
DATASETS, OR THE REASON FOR FAILURE TO OBTAIN RESULTS. HERE, "NC’ DENOTES *’NON-CONVERGENCE’, ’OOT’ DENOTES *OUT OF TIME’, AND "'OOM’
DENOTES *OUT OF MEMORY’

Algorithm Amazon Netflix Goodreads Yahoo! Nell-1 Nell-2 Redddit-2015  Amazing-Reviews
P-Tucker NC NC NC NC OOM OOM OOM OOM
Vest ooT ooT ooT OooT ooT ooT ooT ooT
384.50 140.40 1288.30
SGD_ Tucker (62.41%) NC (25.00%) NC (407.08%) NC NC NC
693.21 2107.49
GTA NC (365.52x)  (375.91%) OOM OOM NC OOM OOM
) 166.40 27.84
Bigtensor NC (87.74x) NC OOM OOM (7.87x) OOM OOM
ParTi! OOM NC NC OOM OOM NC OOM OOM
cuTucke 283.42 395.87 289.39 571.04 168.89 102.85 7045.95 2448.26
uLucker (46.00x)  (208.74x)  (51.52x)  (144.60x)  (53.37x)  (29.08x) (42.39%) (16.79%)
Fast Tuck 104.29 146.51 107.40 212.34 57.63 40.40 2887.64 987.31
cubiast tucker (16.93x)  (77.25x)  (19.12x)  (53.77x)  (18.21x)  (11.42x) (17.37x) (6.77x)
18.48 17.55 32.47 5.40 171.03
cuFasterTuckerCOO (3.00X) NC (3.13%) (8.22x) OOM (1.53%) OOM (1.17)
15.84 12.45 17.77 15.47
cuFasterTucker (2.57x) (6.56x) (3.16x) (3.92x) OOM NC OOM OOM
Fast TuckerPl 92.46 21.33 70.17 40.16 38.55 35.64 1665.12 1008.63
cubastiuckertius | (15.01x)  (11.25x)  (12.49x)  (10.17x)  (12.18x)  (10.08x) (10.02x) (6.92x)
cuFast TuckerPlusTC 6.16 1.90 5.62 3.95 3.16 3.54 166.21 145.81
TABLE V

THE TEST RMSE AFTER 50 ITERATIONS FOR CUFASTTUCKERPLUSTC WITH VARIOUS NUMERICAL PRECISION ON THE REAL-WORLD DATASETS

Matrix A Matrix B Accumulator Matrix Size Amazon Netflix Goodreads Yahoo!  Nell-1 Nell-2
half half half 16 x 16 x 16 1.0132 0.9300 0.8246 1.1314  0.1879  0.3452
half half float 16 x 16 x 16 1.0133 0.9299 0.8243 1.1301  0.1879  0.3453
bf16 bf16 float 16 x 16 x 16 1.0132 0.9298 0.8248 1.1315  0.1879  0.3450
t£32 t£32 float 16 x 16 x 8 1.0129 0.9315 0.8346 1.1317  0.1879  0.3445

double double double 8x8x4 1.0128 0.9322 0.8329 1.1309 0.1878  0.3417
TABLE VI

THE SINGLE ITERATION TIME (IN SECONDS) FOR CUFASTTUCKERPLUSTC WITH VARIOUS NUMERICAL PRECISION ON THE REAL-WORLD DATASETS

Matrix A Matrix B Accumulator Matrix Size Amazon Netflix Goodreads Yahoo! Nell-1  Nell-2
half half half 16 x 16 x 16 0.49 0.42 0.47 1.14 0.66 0.33
half half float 16 x 16 x 16 0.44 0.42 0.45 1.14 0.57 0.35
bf16 b16 float 16 x 16 x 16 0.52 0.44 0.48 1.18 0.67 0.34
t£32 t£32 float 16 x 16 x 8 0.68 0.58 0.62 1.53 0.88 0.43

double double double 8x8x4 7.22 6.59 6.89 16.64 9.25 4.91

same parameter settings and dataset, higher numerical precision
results in longer running times for cuFastTuckerPlusTC. We set
the parameters to {.J,, = 16} and R = 64, and run cuFastTuck-
erPlusTC using five different numerical precisions supported
by Tensor Cores. Table VI reports the single iteration runtime of
cuFastTuckerPlusTC on the Real-World datasets under these five
precision settings. Table V shows the final test RMSE obtained
by cuFastTuckerPlusTC after 50 iterations at each precision
level. It is worth noting that the initial values are consistent
across all runs; only the numerical precision varies. As shown
in Table V, the accuracy of cuFastTuckerPlusTC across the
five precision levels on the real-world datasets is comparable.
Meanwhile, Table VI reveals that the single iteration times
for the three precisions with matrix sizes of 16 x 16 x 16 are
similar. The runtime corresponding to the TF32 data type with
a matrix size of 16 x 16 x 8 increases slightly, whereas the
runtime for double precision with a matrix size of 8 x 8 x 4
increases significantly. The use of double precision results in
more than a tenfold increase in computational time compared

to single precision, primarily due to the lack of native FP64
support for Tensor Cores on consumer-grade GPUs. Therefore,
cuFastTuckerPlusTC employs single precision with a matrix size
of 16 x 16 x 16 as the most appropriate setting.

We further evaluate the computation time and final test RMSE
of cuFastTuckerPlus implemented with CUDA Cores using both
single and double precision. Additionally, we assess the per-
formance of cuTucker, cuFastTucker, and cuFasterTuckerCOO
under the same precision settings. Table VII presents the final test
RMSE of these algorithms on the real-world datasets at different
precision levels, while Table VIII reports their single-iteration
runtimes. As shown in Table VII, using double precision yields
higher final accuracy on some datasets compared to single
precision. However, this improvement comes at the cost of
increased computation time, as reflected in Table VIII. For these
algorithms, single precision is generally sufficient for numerical
computations. Double precision may be adopted when higher
numerical accuracy is required, albeit with a trade-off in perfor-
mance.
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TABLE VII
THE TEST RMSE AFTER 50 ITERATIONS FOR CUFASTTUCKERPLUS WITH VARIOUS NUMERICAL PRECISION ON THE REAL-WORLD DATASETS

Algorithm Precision | Amazon Netflix Goodreads Yahoo! Nell-1 Nell-2
cuTucker float 1.0137 0.9473 0.8430 1.1773  0.1880  0.3466
double 1.0137 0.9464 0.8421 1.1801 0.1880  0.3460
cuFastTucker float 1.0137 0.9488 0.8432 1.1788  0.1880  0.3466
double 1.0137 0.9455 0.8424 1.1788  0.1880  0.3460
float 1.0136 0.9502 0.8437 1.1784 - 0.3467
cubasterTuckerCOO 4 16 1.0138  0.9432 0.8421 1.1780 - 0.3448
cuFast TuckerPlus float 1.0133 0.9301 0.8451 1.1669  0.1879 0.3471
double 1.0164 0.9294 0.8164 1.1278  0.1888  0.3388

TABLE VIII

THE SINGLE ITERATION TIME (IN SECONDS) FOR CUFASTTUCKERPLUS WITH VARIOUS NUMERICAL PRECISION ON THE REAL-WORLD DATASETS

Algorithm Precision | Amazon Netflix Goodreads  Yahoo! Nell-1  Nell-2
cuTuckor float 19.12 17.63 17.55 1237 2418 12.90
double 32.91 27.99 20.63 71.01  43.25 21.85

cuFast Tucker float 6.96 6.23 6.50 1577  8.88 4.77
double 34.38 30.38 31.98 7717 4532 24.10

float 1.22 0.92 1.03 2.40 . 0.66

cuFasterTuckerCOO 1 9.03 7.54 8.08 19.16 - 5.63
float 6.32 5.39 5.69 13.70 7.96 4.09

cukastTuckerPlus double 2658  22.81 23.99 57.91 3354 17.01

TABLE IX

THE RUNNING TIME (IN SECONDS) OF A SINGLE ITERATION FOR CUFASTTUCKERPLUSTC AND OTHER ALGORITHMS ON THE REAL-WORLD DATASETS, AND THE
SPEEDUP ACHIEVED BY CUFASTTUCKERPLUSTC

Algorithm Amazon Netflix Goodreads Yahoo! Nell-1 Nell-2
CcuFast Tucker 0.01 (9.52x)  0.82 (17.52x)  0.85 (12.92x)  2.06 (13.80x) 1.12 (10.56x) _ 0.60 (20.83%)
cuFasterTuckerCOO 0.17 (1.77x) 0.12 (2.52x) 0.14 (2.08x) 0.31 (2.11x) 0.23 (2.22x) 0.10 (3.33x)
The process cuFasterTucker 0.20 (2.14x) 0.11 (2.42x) 0.16 (2.40x) 0.32 (2.12x) 0.28 (2.65x) 0.06 (2.06x)
of updating cuFastTuckerPlus 0.34 (3.57x) 0.29 (6.25x) 0.31 (4.79%) 0.96 (6.46x) 0.42 (3.95%) 0.22 (7.71x)
the factor cuFastTuckeTC 0.18 (1.86x) 0.11 (2.41x) 0.14 (2.18x) 0.29 (1.95x) 0.20 (1.86x) 0.07 (2.37x)
matrices cuFasterTuckerCOOTC | 0.15 (1.58x) 0.08 (1.72x) 0.11 (1.73x) 0.26 (1.72x) 0.18 (1.73x) 0.05 (1.83x)
cuFasterTuckerTC 0.24 (2.56x) 0.14 (3.03x) 0.19 (2.85x) 0.38 (2.57x) 0.34 (3.19x) 0.07 (2.37x)
cuFastTuckerPlusTC 0.10 0.05 0.07 0.15 0.11 0.03
cuFastTucker 1.06 (27.25%x)  0.95 (27.20x)  0.99 (27.04x)  2.40 (27.31x) 1.37 (31.54x) 0.74 (31.33x)
cuFasterTuckerCOO 0.20 (5.05x) 0.14 (4.09x) 0.16 (4.41x) 0.38 (4.30x) 0.26 (5.94x) 0.11 (4.57x)
The process cuFasterTucker 0.18 (4.64x) 0.10 (2.95x) 0.14 (3.93x) 0.29 (3.33x) 0.27 (6.17x) 0.06 (2.67x)
of updating cuFastTuckerPlus 0.88 (22.81x) 0.76 (21.89x) 0.84 (23.10x)  2.14 (24.38x)  0.78 (17.95x)  0.41 (17.44x)
the core cuFastTuckerTC 0.15 (3.86x) 0.11 (3.28x) 0.12 (3.40x) 0.28 (3.23x) 0.18 (4.10x) 0.08 (3.30x)
matrices cuFasterTuckerCOOTC | 0.17 (4.30x) 0.11 (3.15x) 0.14 (3.79x) 0.31 (3.55x) 0.21 (4.94x) 0.06 (2.71x)
cuFasterTuckerTC 0.44 (11.46x)  0.23 (6.63x)  0.34 (9.26x)  0.66 (7.46x)  0.49 (11.33x)  0.10 (4.34x)
cuFastTuckerPlusTC 0.04 0.03 0.04 0.09 0.04 0.02

D. Single Iteration Running Time of the Algorithm

To evaluate the efficiency of the algorithms, we utilize the
single iteration running time as a metric. We set the parameters as
{Jn = 16} and R = 16. Table IX details the single-iteration run-
ning times of cuFastTuckerPlusTC (non-convex optimization
SGD algorithm) and other SOTA algorithms (convex optimiza-
tion SGD algorithms) on the Real-World datasets. It is observed
that cuFastTuckerPlus exhibits a longer running time compared
to cuFasterTucker and cuFasterTuckerCOO. However, it still
achieves a significant speedup of approximately 3x compared
to cuFasterTucker. Additionally, cuFastTuckerPlusTC exhibits
the lowest running time among all the algorithms. In terms
of the synthetic datasets, as depicted in Fig. 2, cuFastTucker-
Plus lags behind cuFasterTucker and cuFasterTuckerCOO in
terms of running time. However, cuFastTuckerPlusTC show-
cases significantly lower running times compared to all other
algorithms.
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E. Memory Access Overhead

To evaluate the memory access overhead of the algorithm,
we use the single iteration memory access time as the indicator.
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TABLE X
THE MEMORY ACCESS TIME (IN SECONDS) FOR CUFASTTUCKERPLUS AND OTHER ALGORITHMS ON THE REAL-WORLD DATASETS, AND THE SPEEDUP ACHIEVED
BY CUFASTTUCKERPLUS

455

Algorithm Amazon Netflix Goodreads Yahoo! Nell-1 Nell-2
The process cuFast Tucker 0.72 (17.56%)  0.52 (23.49x) 0.6 (21.68x) 1.54 (22.06x)  0.70 (16.85x)  0.37 (24.09x)
of updating  cuFasterTuckerCOO | 0.13 (3.17x) 0.05 (2.29x) 0.09 (3.14x) 0.13 (1.87x) 0.17 (3.99x) 0.05 (3.09x)
the factor cuFasterTucker 0.10 (2.43x) 0.03 (1.29x) 0.06 (2.04x) 0.08 (1.20x) 0.13 (3.09%) 0.03 (2.16x)

matrices cuFastTuckerPlus 0.04 0.02 0.03 0.07 0.04 0.02
The process cuFastTucker 0.70 (17.05x) 0.65 (31.10x) 0.61 (20.83x) 1.45 (20.99x) 0.71 (16.61x)  0.37 (23.31x)
of updating  cuFasterTuckerCOO | 0.17 (4.02x) 0.05 (2.40x) 0.12 (4.11x) 0.13 (1.89x) 0.20 (4.74x) 0.05 (3.34x)
the core cuFasterTucker 0.14 (3.45%) 0.07 (3.20x) 0.10 (3.54x) 0.20 (2.87x) 0.20 (4.73x%) 0.03 (1.92x)

matrices cuFastTuckerPlus 0.04 0.02 0.03 0.07 0.04 0.02

TABLE XI

THE SPEEDUP ACHIEVED BY CUFASTTUCKERPLUSTC AND OTHER ALGORITHMS WHEN UTILIZING TENSOR CORES ON THE REAL-WORLD DATASETS
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Algorithm Amazon Netflix  Goodreads  Yahoo! Nell-1  Nell-2
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algorithms on synthesis datasets.

We set the parameters to {.J,, = 16} and R = 16. For the same
algorithm, whether using Tensor Cores or CUDA Cores, the
memory access mode is the same. Therefore, only cuFastTucker,
cuFasterTucker, cuFasterTuckerCOO, and cuFastTuckerPlus are
compared here. Table X presents the time required for cuFast-
TuckerPlus and other algorithms to read parameters from global
memory on the Real-World datasets. Furthermore, Fig. 3 illus-
trates the time taken by cuFastTuckerPlus and other algorithms
to read parameters from global memory on synthetic datasets.
The observations from both the table and the figure demonstrate
that cuFastTucker exhibits the longest memory access time. For
sparse tensors of 3-order, cuFasterTucker requires less memory
access time compared to cuFasterTuckerCOO, while for sparse
tensors of 4-order and above, it takes longer. This discrep-
ancy can be attributed to the higher sparsity of higher-order
sparse tensors in the synthetic dataset. Notably, cuFastTuck-
erPlus showcases the shortest memory access time. Further-
more, as the order of the sparse tensor increases, the memory
access time of cuFastTuckerPlus exhibits the slowest growth
rate.

when utilizing Tensor Cores on the synthesis datasets.

FE. The Speedup of Algorithms by Tensor Cores

Table XI provides the speedup achieved by cuFastTucker-
PlusTC and other algorithms after employing Tensor Cores
on the Real-World datasets. Additionally, Fig. 4 illustrates the
speedup attained by cuFastTuckerPlusTC and other algorithms
with Tensor Cores on the synthetic datasets. The speedup is
calculated as the ratio of the single iteration time required by
the algorithm using CUDA Cores to the single iteration time
required by the algorithm accelerated by Tensor Cores. Analy-
sis of Table XI and Fig. 4 reveals significant acceleration for
cuFastTuckerTC and cuFastTuckerPlusTC. Conversely, cu-
FasterTuckerTC experiences an increase in runtime, while cu-
FasterTuckerCOOTC achieves a slight speedup. Notably, when
updating the factor matrices, cuFastTuckerTC demonstrates
higher speedup compared to cuFastTuckerPlusTC. This dis-
crepancy arises due to the higher computational complexity
of cuFastTucker, with a larger portion of matrix calculations
eligible for acceleration by Tensor Cores. On the other hand,
when updating the core matrices, cuFastTuckerPlus outperforms
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TABLE XII
THE RUNNING TIME (IN SECONDS) OF CUFASTTUCKERPLUSTC AND CUFASTTUCKERPLUS WITH VARIOUS STRATEGIES ON THE REAL-WORLD DATASETS

Algorithm Amazon Netflix Goodreads Yahoo! Nell-1 Nell-2
The process of cuFastTuckerPlus (Calcultion) 0.34 0.29 0.31 0.96 0.42 0.22
u dgtin the cuFastTuckerPlus (Storage) 0.15 0.08 0.11 0.27 0.18 0.04
faclior o ftrices cuFastTuckerPlusTC (Calcultion) 0.09 0.05 0.06 0.15 0.11  0.03
cuFastTuckerPlusTC (Storage) 0.11 0.06 0.09 0.20 0.14 0.03
The process of cuFastTuckerPlus (Calcultion) 0.88 0.76 0.84 2.14 0.78 0.41
b cuFastTuckerPlus (Storage 0.11 0.08 0.10 0.20 0.14 0.05
updating the g
Cg)re matgrices cuFastTuckerPlusTC (Calcultion) 0.04 0.03 0.04 0.09 0.04 0.02
cuFastTuckerPlusTC (Storage) 0.07 0.04 0.05 0.12 0.08 0.02
cuFastTuckerTC in terms of speedup. This distinction is at- Dynthesis datasets Dynthesis datasets
tributed to cuFastTuckerPlus storing more parameters than cu- e e IR i oo
FastTucker, leading to performance degradation in cuFastTuck- 2 | . " P I et
erPlus and thereby making the acceleration more pronounced. — 2:f D - — T
Both cuFasterTucker and cuFasterTuckerCOQ primarily rely on g | & . i g ) L
reading {CEZ):} from global memory rather than utilizing Tensor &  oretmenc Gy | ,, T

Cores for calculations. Consequently, the matrix calculations
suitable for Tensor Cores acceleration are minimal. Moreover,
cuFasterTuckerTC experiences imbalanced performance due
to the use of Tensor Cores, resulting in slower performance
compared to cuFasterTuckerCOOTC.

G. Replace Memory Access With Calculation

When updating the factor matrices in cuFastTuckerPlus
and cuFastTuckerPlusTC, the factor matrices {A(™} are up-

dated dynamically, which means that {c‘(;()n)y:} can only
be computed in real-time during the update process. How-
ever, when updating the core matrices, since {B™} is up-
dated at the end after accumulating gradients, it is possi-

ble to pre-compute {c‘(;()n) .} and store it in memory. Then,
(n)

during the gradient accumulation process, {C‘I,<n)7:} can be
directly read from memory, avoiding redundant computa-
tions. To explore this further, we consider two schemes in
cuFastTuckerPlus and cuFastTuckerPlusTC: one scheme in-

volves pre-computing {C(™} and then reading {CE;()) s

while the other scheme involves real-time computation of
{CEIZ)H) }. We denote these schemes as cuFastTucker Plus

(Storage) and cuFastTuckerPlus (Calculation) for cu-
FastTuckerPlus, and cuFastTucker PlusTC (Storage) and
cuFastTucker PlusTC (Calculation) for cuFastTucker-
PlusTC. We set the parameters as {.J, = 16} and R = 16.
Table XII presents the running time of the aforementioned
schemes for cuFastTuckerPlus and cuFastTuckerPlusTC on the
Real-World datasets., while Fig. 5 illustrates their running time
on synthesis datasets. The results indicate that, in the absence of
Tensor Cores acceleration, the scheme involving pre-computing
{C™} and then reading {Cf;()n) _} demonstrates better effi-
ciency. However, when Tensor Cores acceleration is utilized,
the real-time calculation of {Cgl()n)’:} becomes more efficient.
cuFasterTucker reduces computational overhead by introducing
additional memory access. Howover, Tensor Cores expedite
these calculations, making them faster compared to reading from

memory. This observation highlights that cuFastTuckerPlusTC

i & 10 i

3 g
Order Order

(a) The process of updating the
factor matrices

(b) The process of updating the
core matrices

Fig. 5. The running time (in seconds) of cuFastTuckerPlus and cuFastTuck-
erPlusTC in various strategies on the synthesis datasets.

outperforms cuFasterTucker and cuFasterTuckerTC across var-
ious aspects, resulting in overall superior performance.

VI. CONCLUSION

We propose the FastTuckerPlus decomposition algorithm,
which tackles the entire optimization problem by dividing it
into two non-convex optimization subproblems. This approach
enables us to leverage the advantages of local search algorithms
based on SGD, which exhibit faster convergence compared to
global search algorithms used in convex optimization. Addition-
ally, we introduce the cuFastTuckerPlusTC algorithm, which
leverages fine-grained parallelism on GPUs and fully utilizes the
capabilities of Tensor Cores. Our experimental results demon-
strate that cuFastTuckerPlusTC achieves significantly faster
convergence compared to existing SOTA algorithms. Specifi-
cally, its single iteration time is 3x to 5x faster than the SOTA
algorithm, while simultaneously exhibiting smaller memory
access overhead. Our algorithm excels at handling high-order
and large-scale sparse tensors, exhibiting lower memory access
and computational overhead compared to existing algorithms.
Moreover, it outperforms SOTA algorithms in terms of conver-
gence speed and load balancing.
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