Investigating Process Scheduling

What are the Learning Outcomes of this tutorial?
At the end of this lab you should be able to:

1. Enter source code in the compiler and compile it to executable programs.
Load the programs into the CPU simulator’s memory.

Create processes from programs in the OS simulator.

Explain the differences between pre-emptive and non-pre-emptive scheduling.

2

3

4. Select different scheduling policies and run the processes in the OS simulator.
5

6. Locate the CPU register values in a process’s PCB when it is in the ready queue.
7

Explain how the CPU register values in PCB are used in Round Robin scheduling.

Why are CPU and OS Simulators used for this tutorial?

The computer architecture tutorials are supported by simulators, which are created to
underpin theoretical concepts normally covered during the lectures. The simulators
provide visual and animated representation of mechanisms involved and enable the
students to observe the hidden inner workings of systems, which would be difficult or
impossible to do otherwise. The added advantage of using simulators is that they allow
the students to experiment and explore different technological aspects of systems
without having to install and configure the real systems.

What is the basic theory behind the tutorial exercises?

The different OS scheduling policies are discussed during the lectures on Process
Management. This tutorial is based on these lectures.

Conduct of the tutorial

The following practical exercises are designed to help you better understand the theory
covered during the lectures. You will only fully benefit from these exercises if you take
note of the following guidelines:

= Familiarize yourself with the basic theory (see the lecture notes)
= Follow the instructions in FULL

= Attempt ALL the question(s) at the end of each exercise

= Complete ALL the exercises in this tutorial

= Work with other member(s) of your group

You are expected to work in a small group of students (two or three). There is strong
evidence that learning is best facilitated by working in collaboration with your peers and
under the supervision of your tutor.

Preparation for the tutorial

The CPU-OS Simulator software is installed on all the PCs in the lab. Ask your tutor
for help if you have difficulty locating it.

Note: From time to time, the CPU/OS simulator software is updated. In this case
your tutor may supply you with or direct you to another version to update the one
on the drive. Please follow your tutor’s instructions on how to do this.

Warning: Sometimes, due to a (yet undiscovered) bug in the simulator software, the
simulator may crash. If this happens re-start the simulator and carry on from where

you left. Please make sure you save your work, e.g. source code, at regular intervals

to minimise the impact of this.

Now, we start the tutorial exercises

Learning outcome 1: Entering source code in the compiler and compiling it to an
executable program.

You need to create some executable code so that it can be run by the CPU simulator
under the control of the OS simulator. In order to create this code, you need to use the
compiler which is part of the system simulator. This compiler is able to compile simple
high-level source statements similar to Visual Basic. To do this, open the compiler
window by selecting the COMPILER... button in the current window. You should now be
looking at the compiler window.

In the compiler window, enter the following source code in the compiler’s source editor
window (under PROGRAM SOURCE frame title):

program LoopTest

1 =0

for n = 0 to 40
1 =1 +1

next

end

Now you need to compile this in order to generate the executable code. To do this, click
on the COMPILE... button. You should see the code created on the right in PROGRAM
CODE view. Make a habit of saving your source code.

Click on the button SHOW... in BINARY CODE view. You should now see the Binary Code
for LOOPTEST window. Study the program code displayed in hexadecimal format.
Provide brief answers to the following questions and then close the window.

Q1. How does the hexadecimal code here relate to the information in the compiler
window and the CPU simulator window?

Q2. Click on the SHOW INSTRUCTION STATS... button and make a note of the most
used instruction. Does this surprise you? Explain.

Learning outcome 2: Loading the program into the CPU simulator’s memory.

Now, this code needs to be loaded in memory so that the CPU can execute it. To do this,
first we need to specify a base address (in ASSEMBLY CODE view): uncheck the box next
to the edit box with label Base Address, and then enter 100 in the edit box. Now, click
on the LOAD IN MEMORY... button in the current window. You should now see the code
loaded in memory ready to be executed. You are also back in the CPU simulator at this
stage. This action is equivalent to loading the program code normally stored on a disc
drive into RAM on the real computer systems.

Q1. Briefly explain what the column headers named PAdd and LAdd signify. Why are
they different?

Q2. Observe the values of the PC and the BR registers. What do these values signify?

Learning outcome 3: Create processes from programs in the OS simulator.

We are now going to use the OS simulator to run this code. To enter the OS simulator,
click on the OS... button in the current window. The OS window opens. You should see
an entry, titled LoopTest, in the PROGRAM LIST view. Now that this program is available
to the OS simulator, we can create as many instances, i.e. processes, of it as we like. You
do this by clicking on the CREATE NEW PROCESS button. Repeat this four times. Observe
the four instances of the program being queued in the ready queue which is
represented by the READY PROCESSES view.

Learning outcome 4: Select different scheduling policies and run the processes in
the OS simulator.

Learning outcome 5: Explain the differences between pre-emptive and non-pre-
emptive scheduling.

Make sure the First-Come-First-Served (FCFS) option is selected in the
SCHEDULER/Policies view. At this point the OS is inactive. To activate, first move the
Speed slider to the fastest position, then click on the START button. This should start the
OS simulator running the processes. Now, follow the instructions below without any
deviation:

1. Make a note of what you observe as the processes are run (you need to
concentrate on the two views: RUNNING PROCESSES and the READY PROCESSES
during this period).

2. When all the processes finished, do the following. Select the Priority (static)
option in the SCHEDULER/Policies view. Then select the Non-preemptive option
in the SCHEDULER/Policies/Priority Type frame. Create three processes with the
following priorities (use the Priority drop-down list in the PROGRAM
LIST/Processes view): 3, 2, 4. Slide the Speed selector half-way down and then
hit the START button. While the first process is being run do the following.
Create a fourth process with priority 1. Make a note of what you observe.

3. Now, slide the Speed selector to fastest position and wait for the processes to
complete (or use the KILL button to terminate the processes one by one). Next,
select the Pre-emptive option in the SCHEDULER/Policies/Priority Type frame.
Create three processes with the following priorities: 3, 2, 4. Slide the Speed
selector half-way down and then hit the START button. While the first process is
being run do the following. Create a fourth process with priority 1. Make a note
of what you observe. How is this different than (2) above?

4. Slide the Speed selector to fastest position and wait for the processes to
complete (or use the KILL button to terminate the processes one by one). Select
the Round-Robin (RR) option in the SCHEDULER/Policies view. Then select the
Non-preemptive option in the SCHEDULER/Policies/Priority Type frame. Create
four processes and hit the START button. Make a note of what you observe.

5. Wait for all the processes to complete (or kill them). Go to the compiler window
(use the COMPILER... button in the GO TO frame for this). Click the NEW button
in the PROGRAM SOURCE view and enter the following source code:

program LoopForeverTestl

n=2~0

while true
n=n-+1

wend

end

Compile this code and load it in memory as previously described above (Use
Base Address 200 in this case). Go to the OS window (use the OS... button for
this). You should now see an additional entry in the PROGRAM LIST view titled
LoopForeverTestl. Select this entry by clicking on it. We are now going to create
processes of this program but this time we will assign a lifetime (in seconds) to
each. We'll create three processes with the following lifetime values (use the
Lifetime text box for the values and also select the Secs radio button): 10
seconds, 32 seconds, 6 seconds. Now, we are going to select the time slot value.
To do this select 4 seconds from the drop-down list in SCHEDULER/Policies/RR
Time Slice view. Hit the START button and wait until all processes finish.

Open the OS Activity Log window by clicking the VIEW LOG... button in the
SCHEDULER/Views tab. Observe the relevant log entries and check out the
sequence of the running processes and note the time spent by each process
during each running state. Record this information in the box below.

Learning outcome 6: Locate the CPU register values in a process’s PCB when it is in
the ready queue.

Learning outcome 7: Explain how the CPU register values in PCB are used in Round
Robin scheduling.

Now, go to the compiler and enter the following code in the source code editor. You
need to click on the NEW button to start a new source code tab in the editor:

program LoopForeverTest2
while true

n=n-++1

1 =1 +n

p=n+1+25
wend

end

Compile this new source and load in memory (use Base Address 300 in this case). Go to
the OS simulator. You’ll observe a third entry in the PROGRAM LIST view titled
LoopForeverTest2. Click on the entry LoopTest and create a process. Click on
LoopForeverTest2 and create a process of it. There should now be two processes in the
ready queue. Make sure the Round Robin scheduling is selected; the priority type is
Non-preemptive and that the RR Time Slice is set to 10 ticks (you can select this from
the drop-down list).

1. Select each process in turn and click on the PCB... button. Observe the values of
the PC Registers in each case and make note of these in the box below. Also,
note down what other information is in the PCB (select three examples) and
briefly explain why this information is required.

2. Select the Suspend on run check box in the READY PROCESSES view.

3. When the currently running process is put back in the ready queue, select it and
click on the PCB... button in the ready queue. Make a note of the PC Register
value and the values of the registers ROO to R0O5.

4. Click on the RESUME... button and when the second process is put back on the
ready queue make a note of the PC Register and the ROO to RO5 register values
in its PCB in the above box.

5. Now, select the Suspend on run check box in the RUNNING PROCESSES view.
Slow down the OS simulation to minimum. Click on the RESUME button and
when the queued process is put back in running state the simulation will be
automatically suspended. Click on the RESUME button and immediately click on
the SUSPEND button (this is the same as the RESUME button). Make a note of
the values in the PC register and the registers ROO to RO5. Compare these values
with the ones recorded in (3) and (4) above.

6. Click on the RESUME button and kill the currently running process. Click on the
RESUME button and immediately click on the SUSPEND button. Make a note of
the values in the PC register and in the registers RO0 to RO5. Compare these
values with the ones in (3) and (4) above. Briefly explain what has been
happening.

