Investigating Threads

Learning Outcomes

At the end of this lab you should be able to:

LO1. Write a source code that creates threads
LO2. Use the simulator to compile and run the code

LO3. Display the list of processes/threads and the tree of processes showing the
parent/child process relationship

LO4. Demonstrate that threads share their parent’s data areas

LO5. Modify the source code to create a version not using threads to be able to
compare the two versions

LO6. Simulate a multi-threaded server program

What are threads?

Threads are similar to processes and they too get scheduled by the OS. However, they do
not normally exist in isolation. All threads have parent processes or other parent threads.
Threads are usually referred to as “light-weight processes” (lwp). This is because thread
creation and management is not as demanding and time-consuming as processes. Also,
threads normally share their parents’ (and grandparents’) global data spaces and other
resources.

Tutorial Exercises

In this tutorial, you'll investigate the threads (or light-weight processes). To do this we’ll use
the CPU/QS simulator. You also need to use the “teaching” compiler that is part of the
simulator. Please note that the method of creating threads, as shown below, is specific to
the “teaching” compiler and the simulator; other languages such as Java and C++ use
different methods.

LO1. Write a source code that creates threads.
Start the CPU/OS simulator. In the compiler window enter the following source code:

program ThreadTestl
sub threadl as thread
writeIn('In threadl™)
while true
wend
end sub

sub thread2 as thread
call threadl

1

writeIn("'In thread2™)
while true
wend

end sub

call thread2
writeIn('In main™)

do

loop
end

Notes:

1. The “as thread” construct marks the subroutine executable as a thread.

2. You may wish to save the above code in a file or paste it in Notebook.

Briefly explain what the above code is doing:

List the order in which you expect the text to be displayed by the “writeln” statements:

LO2. Use the simulator to compile and run the code.

LO3. Display the list of processes/threads and the tree of processes showing the
parent/child process relationship.

a) Compile the above source and load the generated code in memory.

b) Make the console window visible by clicking on the INPUT/OUTPUT... button. Also
make sure the console window stays on top by checking the Stay on top check
box.

c¢) Now, go to the OS simulator window (use the OS... button in the CPU simulator
window) and create a single process of program ThreadTest1 in the program list
view. For this use the CREATE NEW PROCESS button.

d) Make sure the scheduling policy selected is Round Robin and that the simulation
speed is set at maximum.

e) Hit the START button and at the same time observe the displays on the console
window.

Briefly explain your observations:

How many processes are created?

Identify, by name, which is a process and which is a thread:

f) Now, click on the Views tab and click on the VIEW PROCESS LIST... button.
Observe the contents of the window now displaying.

Briefly explain your observations:

What do you think the PPID field signifies?

Is there equivalent information in MS Windows?

g) Inthe Process List window hit the PROCESS TREE... button. Observe the contents
of the window now displaying.

Briefly explain your observations:

How are the parent/child process relationships represented?

Identify the parent and the children processes:

Is there equivalent information in MS Windows?

h) Stop the running processes by repeatedly using the KILL button in the OS
simulator window.

LO4. Demonstrate that threads share their parent’s data areas.

We now need to modify the above program statements for the next set of exercises. You
can do this in two ways: 1) Modify the existing source, 2) Copy the code and paste it into a
new editor window (you can use the NEW... button for this in the compiler window). The

required modifications are in bold and underlined. Also make sure that this modified
program has a different program name as shown below.

program ThreadTest2
var sl string(6)
var s2 string(6)

sub threadl as thread
sl = "hellol"
writeIn('In threadl™)
while true
wend

end sub

sub thread2 as thread
call threadl
s2 = "hello2"
writeIn(’'In thread2'™)
while true
wend

end sub

call thread2
writeIn(C'In main™)
wait

writeln(sl)
writeln(s2)

end

Notes:

1. The “wait” statement allows the parent process to wait for its children to terminate
before it continues.

Briefly explain what effect the modifications will have:

a) Compile the above source and load the generated code in memory.

b) Click on the SYMBOL TABLE... button in the compiler window. In the displayed
window, observe the information on variables s1 and s2.

Make a note below of the data memory addresses for variables s1 and s2:

c) Make the console window visible by clicking on the INPUT/OUTPUT... button.
Also make sure the console window stays on top by checking the Stay on top
check box.

d) Now, go to the OS simulator window and create a single process of program
ThreadTest2 in the program list view. For this use the CREATE NEW PROCESS
button.

e) Make sure the scheduling policy selected is Round Robin and that the simulation
speed is set at maximum.

f) Hit the START button and after all the displays on the console window are done
use the SUSPEND button to temporarily suspend the processes. Identify and
select the grandparent process.

g) Now, click on the SHOW MEMORY... button. This action will display the data area
of the selected process. Observe the contents of the memory areas of variables
sl and s2 (use the address values you noted down in (b) above).

h) Display the memory areas of the child processes and again observe the contents
of the memory areas of variables s1 and s2 (note that each string variable’s data
starts with the first byte set to 03).

Briefly explain what your general observations are and suggest what the significance of your
observations is:

i) Click on the RESUME button and stop the running processes by repeatedly using
the KILL button in the OS simulator window.

LO5. Modify the source code to create a version not using threads to be able to compare
the two versions.

a) Modify the source code for ThreadTes1 by removing the two instances of “as
thread” from the two subroutine declarations. You may wish to call this modified
source code ThreadTest3.

b) Compile the code and load in memory.
c) Create a process of it and run in the OS simulator.

d) Observe the display in the console window.

Briefly describe what you observe and explain how and why this differs from the results of
the previous processes:

e) Stop the running process by using the KILL button in the OS simulator window.

LO6. Simulate a multi-threaded server program

In the compiler window enter the following source code:

program ServerTest
var p integer

sub ServiceThread as thread
writelIn(*'Started service™)
for 1 = 1 to 30
next
writeIn("'Finished service™)
end sub

sub ServerThread as thread
while true
read(nowait, p)
select p
case "1°
call ServiceThread
case "Qq°
break
case else

end select
wend
end sub

call ServerThread
wait
end

a. Compile the above source, load the generated code in memory and run it.

b. Make a note below of what you observe on the OS simulator window:

c. Onthe console window type 1 four times one after the other and observe
the displays on the console.

d. When all the threads finish then make a note of the displays on the
console.

e. Type q on the console to stop the server program.

f. Now, modify the above code by removing the “as thread” construct from
the subroutine ServiceThread.

g. Compile the above source, load the generated code in memory and run it.

h. On the console window type 1 four times one after the other and observe
the displays on the console.

i. When all the threads finish then make a note of the displays on the
console.

j- Type g on the console to stop the server program.

k. Compare the displays in (I) with those in (q) above. Do they differ? If they
do then explain below why they differ?

