Investigating Synchronisation

Introduction

At the end of this lab you should be able to:

1. Show that writing to unprotected shared global memory region can have
undesirable side effects when accessed by threads at the same time.

2. Understand shared global memory protection using synchronised threads.
3. Explain how critical regions of code can protect shared global memory areas.

4. Show that memory areas local to threads are unaffected by other threads.

Processor and OS Simulators

The computer architecture tutorials are supported by simulators, which are
created to underpin theoretical concepts normally covered during the lectures.
The simulators provide visual and animated representation of mechanisms
involved and enable the students to observe the hidden inner workings of
systems, which would be difficult or impossible to do otherwise. The added
advantage of using simulators is that they allow the students to experiment and
explore different technological aspects of systems without having to install and
configure the real systems.

Basic Theory

Concurrent processes accessing global shared resources at the same time can
produce unpredictable side-effects if the resources are unprotected. Computer
hardware and operating system can provide support for implementing critical
regions of code when globally accessible resources are shared by several
concurrently executing threads.



Lab Exercises - Investigate and Explore

Start the CPU simulator. You now need to create some executable code so that it can be
run by the CPU under the control of the OS. In order to create this code, you need to use
the compiler which is part of the system simulator. To do this, open the compiler
window by selecting the COMPILER... button in the current window.

1. Inthe compiler window, enter the following source code in the compiler source
editor area (under PROGRAM SOURCE frame title). Make sure your program is
exactly the same as the one below (best to use copy and paste for this).

program CriticalRegionl
var g integer

sub threadl as thread
writeIn('In threadl'™)

g=2=0

for n = 1 to 20
g=9g+1

next

writeIn('threadl g = ", Q)
writeIn("Exiting threadl™)
end sub

sub thread2 as thread
writeIn('In thread2'™)

g=2=0

for n =1 to 12
g=9g+1

next

writeIn(""thread2 g = ", g)
writeIn("Exiting thread2')
end sub

writeIn('In main™)

call threadl
call thread2

wailt
writeIn("Exiting main')
end

The above code creates a main program called CriticalRegion1. This program
creates two threads threadl and thread2. Each thread increments the value of
the global variable g in two separate loops.



Work out what two values of g you would expect to be displayed on the console
when the two threads finish?

Compiling and loading the above code:

i)
i)
i)

iv)

Compile the above code using the COMPILE... button.

Load the CPU instructions in memory using the LOAD IN MEMORY button.
Display the console using the INPUT/OUTPUT... button in CPU simulator.
On the console window check the Stay on top check box.

Running the above code:

i)

ii)
iii)
iv)
v)
vi)
vii)
viii)

Enter the OS simulator using the OS 0... button in CPU simulator.

You should see an entry, titled CriticalRegion1, in the PROGRAM LIST view.
Create an instance of this program using the NEW PROCESS button.

Select Round Robin option in the SCHEDULER/Policies view.

Select 10 ticks from the drop-down list in RR Time Slice frame.

Make sure the console window is displaying (see above).

Move the Speed slider to the fastest position.

Start the scheduler using the START button.

Now, follow the instructions below without any deviations:

When the program stops running, make a note of the two displayed values of g. Are
these values what you were expecting? Explain if there are any discrepancies.

Change RR Time Slice in the OS simulator window to 5 ticks and repeat the above
run. Again, make note of the two values of the variable g. Are these different than
the values in (2) above? If so, explain why.




4. Modify this program as shown below. The changes are in bold and underlined.
Rename the program CriticalRegion2.

program CriticalRegion2
var g integer

sub threadl as thread synchronise
writeIn('In threadl™)

g=2=0

for n =1 to 20
g=9g+1

next

writeIn('threadl g = ", Q)
writeIn(Exiting threadl™)
end sub

sub thread2 as thread synchronise
writeIn('In thread2'™)

g=2=0

for n =1 to 12
g=9g+1

next

writeIn(C'thread2 g = ", 9)
writeIn("Exiting thread2')
end sub

writeIn('In main™)

call threadl
call thread2

wailt
writeIn("Exiting main')
end

NOTE: The synchronise keyword makes sure the threadl and thread2 code are
executed mutually exclusively (i.e. not at the same time).

5. Compile the above program and load in memory as before. Next, run it and carefully
observe how the threads behave. Make a note of the two values of variable g. Are
the results different than those in (2) and (3) above? If so, why?




6. Modify this program for the second time. The new additions are in bold and
underlined. Remove the two synchronise keywords. Rename it CriticalRegion3.

program CriticalRegion3
var g integer

sub threadl as thread
writeIn(’'In threadl™)

enter

g=20

for n = 1 to 20

g=9g+1

next

writeIn("threadl g = ', Q)
leave

writelIn(Exiting threadl™)

end sub

sub thread2 as thread
writeIn('In thread2'™)

enter

g=20

for n = 1 to 12

g=9g+1

next

writeIn('thread2 g = ", 9)
leave

writelIn(Exiting thread2™)

end sub

writeIn('In main™)

call threadl
call thread2

wait
writeIn("'Exiting main™)
end

NOTE: The enter and leave keyword pair protect the program code between
them. This makes sure the protected code executes exclusively without sharing
the CPU with any other thread.

7. Locate the CPU assembly instructions generated for the enter and leave keywords in
the compiler’'s PROGRAM CODE view. You can do this by clicking in the source editor



on any of the above keywords. Corresponding CPU instruction will be highlighted.
Make a note of this instruction here:

Compile the above program and load in memory as before. Next, run it. Make a note
of the two values of variable g.

Modify this program for the third time. The new additions are in bold and
underlined. Remove the global variable g, enter and leave keywords. Rename it
CriticalRegion4.

program CriticalRegion4
sub threadl as thread
var g integer

writeIn('"In threadl™)

g=20

for n =1 to 20
g=9g+1

next

writeIn(""threadl g = ", Q)
writeIn("Exiting threadl')
end sub

sub thread2 as thread
var g integer

writeIn('In thread2')

g=20

for n =1 to 12
g=9g+1

next

writeIn('thread2 g = ', Q)
writeIn("Exiting thread2™)
end sub

writeIn(C'In main™)

call threadl
call thread2

wait
writeIn("Exiting main')
end



10. Compile the above program and load in memory as before. Next, run it. Make a note
of the two values of variable g. How do the new g variables differ than the ones in
(1), (4) and (6) above?

11.

So what have we done so far? To help understand theory better try to answer the
following questions. You need to include this in your portfolio, so it is important that
you attempt all the questions below. However, you don’t need to complete this part
during the tutorial session.

a)
b)
c)

d)

e)

f)

Briefly explain the main purpose of this tutorial as you understand it.

Why have we chosen to display the same global variable g in both threads?
What popular high-level language uses the keyword synchronise (or similar) for
the same purpose as the code in (4)?

Critical regions are often implemented using semaphores and mutexes. Find out
what these are and how they differ. Describe on a separate sheet.

Some computer architectures have a “test-and-set” CPU instruction for
implementing critical regions. Find out how this works and briefly describe on a
separate sheet.

In the absence of any help from hardware and operating system, how would you
protect a critical region in your code? Suggest a way of doing it and state how it
would differ from the above methods (hint: “busy wait”).




