Process States and Memory Management

Learning Objectives
At the end of this lab you should be able to:

= Demonstrate three main states of processes

= |dentify allowed and disallowed process state transitions

= Show entry in and exit from waiting state on two types of events

= Demonstrate three placement strategies used in memory management
= Demonstrate virtual memory activity as part of memory management

Tutorial Exercises

Initial Preparation

This tutorial uses the CPU-0S Simulator software which simulates the functions of a typical
modern CPU and a typical Operating System (OS). To start the simulator, double-click on the
simulator icon or name. This starts up the CPU simulator’s main window. Next go to the OS
simulator’s main window by first selecting the Advanced tab and then clicking on the OS 0...
button.

Please read the instructions carefully before you attempt the exercises using the simulator. If
at any point the simulator crashes, restart it and carry on from where you left.

LO 1: Investigating Process States and State Transitions

In this section we’ll look at different process states and the transitions from one state to
another. Some of these transitions are allowed and some are not, i.e. illegal transitions.

In the OS Simulator window select the Views tab. Click on the VIEW PROCESS STATES... button.
You’ll see the Process States window displayed. This window shows a graphical representation
of the Ready Queue where the process is in Ready State. It also shows a representation of the
CPU where the process is in Running State. Also shown is the representation of the Waiting
Queue where the process is in Waiting State.

In this window check the Stay on top and Animate check boxes. Back in the OS Simulator
window select the Program tab and load ForeverLooping program. Now, select the Process tab
and create a single process from this program by clicking on the CREATE NEW PROCESS button.

In the Process State window you’ll see a single process at the head of the Ready Queue. This
process is represented by a coloured box. Its process number is displayed on the box. Now we
are ready to investigate process states. To do this, follow the actions in the table below and
make a note of the results of your actions.

Note that the actions will involve dragging and dropping the process box into various areas. If
the dragging and dropping action results in a failure then the following message is displayed at

the bottom of the window: ***ERROR: lllegal state transition! This means the transition is not

allowed.

Finally, before you start, in the OS Simulator window check the Suspend on state change check
box in the READY PROCESSES area only and slide the CPU Speed slider to the fastest position.
The Suspend on state change suspends the simulator and displays a message whenever a
process changes its state. You’ll need to click on the RESUME button to continue. Now execute

the actions below and fill in the three columns on the right:

Action to take

Resultant
State

Success
(Y or N)

Fail
(Y orN)

. Drag process to the waiting queue (i.e. put in waiting state)

. Drag process to the Process Bin (i.e. terminate it)

. Drag process to the CPU 0 box (i.e. run it)

. Drag process to the waiting queue

. Drag process to the Process Bin

. Drag process to the Ready Queue (i.e. put it in ready state)

. Click on the RESUME button in OS Control tab

1
2
3
4
5. Drag process to the CPU 0 box
6
7
8
9

. Drag process to the ready queue

10. Click on the RESUME button in OS Control tab

11. Drag process to Process Bin

Next, based on the results above, fill in only the legal state changes in the table below:

From State To State

The state transition diagram below shows process states and ALL the transitions between
them. Some transitions are not legal. Remove the arrows that represent the illegal transitions,
i.e. the ones that are not allowed by the OS:

LO 2: Investigating Process States — Waiting Queue and Events

In the OS Simulator select the Program tab and load the program OSQueuesDemo. This
program runs on the CPU for a short while and then waits for 3 seconds before running on the
CPU again. This repeats forever. Your task is to observe this activity. First, you need to create a
single process of this program using the CREATE NEW PROCESS button in the Process tab.

Next, check ALL three Suspend on state change check boxes (there are three of them in OS
simulator). Next, start the scheduler by clicking on the START button. Make a note in the table
below of the sequence of the next six states of the process (Note: You'll need to click on the
RESUME button in the Process tab after each display of the message window just after the
state change). The staring state and the expected ending state are filled in for you.

States
1. RUNNING
2.
3.
4.
5.
6. READY

NOTE: If you need to restart, you can clear the process by using the KILL button (if the process
is running) or the REMOVE button (if the process is in Ready Queue or in the waiting queue).

The above example is a demonstration of a process going into the WAITING state as a result of
suspending itself for 3 seconds (that’s how it was programmed). Next, we are going to look at
another method of suspending a program. If a RUNNING program is waiting on an input the OS
will force it to go into the WAITING state until it receives the input. To demonstrate this, do the
following:

Load the program WaitOnReadDemo. Then create a single process of this program. Make sure
all three Suspend on state change check boxes are NOT checked. Also make sure the CPU
Speed slider is in the fastest speed position. Next, in the CPU Simulator window, select the
Advanced tab and click on the INPUT OUTPUT... button. You should now see the Console
window. In this window click on the SHOW KBD... button which will bring up a small window
representing a keyboard. Check the Stay on top check box on the Console window. Back in the
OS Simulator click on the START button to start the scheduler.

Wait until a > character is displayed in the Console window. Now check to see what state the
process is in (look at the OS simulator window) and make a note of this below:

Using the small Keyboard window click on any button and observe what happens in the OS
simulator. Make a note below of what state the process goes into immediately after a keyboard
button is clicked:

The above will be repeated as many times as you like until you enter a * (star) character to
terminate this program.

The above demonstration was about the process being suspended by the OS as soon as it waits
for aninput, i.e. it stays in the WAITING state. As soon as an input is supplied it starts running
again until it once again waits for another input. The OS makes sure that all processes waiting
for inputs are put into the waiting state. Once the input is provided, i.e. the input/output event
is completed, a waiting process comes out of the waiting state.

LO 3: Looking at Memory Placement Policies

The above exercises concentrated on the process states and transitions between them. The
following exercises are about memory management.

Once a process is created the OS needs to find space in primary memory (i.e. the RAM) for the
process’s data and code. There are three main methods employed: 1) First fit, 2) Best fit and 3)
Worst fit. To demonstrate how these work follow the instructions below:

First, make sure no programs are in memory. Remove any processes which may happen to be in
any of the queues (use the REMOVE buttons) and also remove all the loaded programs by
selecting the program and clicking on the REMOVE button in the Program tab. We are now
starting from scratch!

In the OS Simulator window, select the Views tab and click on the VIEW MEMORY... button.
You'll see the Main Memory window displayed. Now, make sure the Frames drop-down list is
set to 1. Click on the ADD button repeatedly until all memory is allocated (needs 10 clicks). We
will now proceed to make “holes” in the memory. Please follow the instructions below exactly
in the order listed:

Using the Frame No drop-down list set it to 2 then click the REMOVE button to remove it.
Set the Frame No to 3 and remove it.
Set the Frame No to 5 and remove it.
Set the Frame No to 7 and remove it.
Set the Frame No to 8 and remove it.
Set the Frame No to 9 and remove it.

You should now have only frames 0, 1, 4 and 6 allocated with gaps of free memory spaces of
various sizes between them.

Now, set the Placement Policy drop-down list to First Fit. Load the program ForeverLooping if
it’s not already loaded. Create a single process of it. Observe in which gap in Main Memory its
memory is allocated. Now remove the process by clicking on the REMOVE button in the READY
PROCESSES area (Note: Do not remove the program, just the process).

Next, set the Placement Policy drop-down list to Best Fit. Create a new process and observe in
which gap in Main Memory its memory is allocated. Once again remove this process.

Finally, set the Placement Policy drop-down list to Worst Fit. Create a new process and observe
in which gap in Main Memory its memory is allocated. Again remove this process.

Now, before you continue clear the memory by clicking the RESET button.

Fill in the table below, against each of the three methods, explaining how each method works:

First Fit
placement
method

Best Fit
placement
method

Worst Fit
placement
method

LO 4: Looking at Virtual Memory and Swapping

When a process is created it is also allocated some memory from free memory space in RAM. If
this memory runs out of free space then the process’s memory will be swapped onto a
secondary storage like a hard drive. In this case, the hard drive will be regarded as an extension
of the primary memory (i.e. virtual memory). However, when this process is scheduled to run
next then its swapped out memory must be brought into RAM first. This action will usually
result in another process’s memory space being swapped out onto the hard drive in order to
make space for the incoming process. The following exercise demonstrates this activity.

In the OS Simulator window select the Views tab. Click on the VIEW UTILIZATION... button. This
will show the Resource Utilisation window. Here you can see the CPU and memory utilization
as bar charts (both RAM and virtual memory shown). Next, click on the VIEW MEMORY...
button in the OS Simulator. You’ll now see the Main Memory (RAM) window. In this window
first uncheck the Paging Enabled check box. This action is important so make sure it’s done!

Next load the program OSQueuesDemo if it’s not already loaded. Create the following three
processes of this program with the specified page sizes (see the table below). You can select the
process page size using the drop-down list Pages in the Process tab while you are creating a
process. After you create each process observe the values in the Resource Utilisation window
and note them down in the following table:

Process Pages Free Alloc Swap
P1 4
P2 5
P3 3

Comment on why P3’s memory is swapped out by referring to the table above:

Now, make sure in OS Simulator the Suspend on state change check box is selected in
RUNNING PROCESS area only. Also make sure the CPU Speed slider is in the fastest position.
Next, click on the START button in the OS Control tab. When the message window appears
indicating a change in state, make a note of the three memory utilisation values in the table
below against the currently running process. Restart the OS by clicking on the RESUME button
in OS Control tab. Carry on doing this for all processes indicated in the table below making a
note of the three values in the corresponding columns:

Process Free Alloc Swap
P1
P2
P3
P1
P2
P3

When you finish, uncheck the Suspend on state change check box and click on the RESUME
button. As the processes start running click on the KILL button to stop them one by one. When
all three processes terminate make a note of the following resource utilization values:

CPU % Free Alloc Swap

The exercises above have been designed to demonstrate the basic principles of OS memory
management. Review what has been done in the last section above and make your comments
on the way virtual memory management functions in the box below:

Appendix — Program sources used in this tutorial

If you feel adventurous you can copy and paste each of the programs below in the integrated
compiler’s source editor and then compiling them one by one (use the COMPILER... button in
the CPU Simulator for this). This tutorial uses the corresponding pre-compiled code
downloaded. Use the NEW button in the compiler to create a new editor for each of the

programs and compile them individually.

program 0SQueuesDemo
while true
for n = 1 to 15
i =1
next
wait(3d)
wend
end

program WaitOnReadDemo
regvar d integer

while true
for n = 1 to 15
i =1
next

write(''> ")

read(d)

writeln(d)

iT d = 42 then
break

end i1f

wend
end

program ForeverLooping
while true
n =1
wend
end

%Start of program

%Forever loop

%Repeat 15 times

%Just something to do!

%End of repeat loop
%Suspend program for 3 secs
%End of forever loop

%End of program

%Keep Input in a register

%This loop keeps CPU busy
%Just something to do!

%Display this prompt

%Wait for keyboard input
%Display input character
%Test 1f end of program

%End program 1f a * character

%Do a forever loop
%Does nothing useful but
%keeps the CPU busy

