An Algorithm for Detecting Sentence Validity

Charles DeGennaro, Andrew McDonald, and Ashley Suchy

State University of New York at New Paltz

Abstract. In this paper, we introduce an algorithm for determining
the grammatical validity of a sentence. We take a similar approach as in
Preller [1] and Lambek [4] [3] by encoding the English words based on
word type which we call components. A sentence can be described both
algebraically and geometrically. Our algorithm generates the geometric
portion called underlinks from the generalized reductions of the algebraic
portion. Underlinks uniquely determine the reduction of the components
leading to the empty string. This is the mathematical basis for deter-
mining if a sentence is valid. We also provide a proof for the algorithm’s
time complexity of O(n?) along with a Python implementation.

This paper is part of a bigger project based on Coecke [2]where we explore
the combination of a sentence’s grammar and meaning. This is done
by combining two compact closed categories; pregroups represent the
grammar of a sentence, and finite dimensional vector spaces describe the
meaning of a sentence. Together one compact closed category is created,
representing both aspects of the sentence.

Keywords: algorithm, language processing, pregroup grammars

1 Introduction

The work got started by looking at Coecke [2] where the main objective is to
combine category theory and pregroup grammars to look at the meaning and
grammar of a sentence together. We then narrowed our scope to the grammatical
portion of the paper, with a specific interest in checking sentence validity. With
the ideas presented in Coecke, we set out to look for an algorithm that could
determine sentence validity, as it was mentioned to be possible, but never shown.
After reading through the work of Preller [1] and Lambek [3], the foundations of
our algorithm were discovered. These ideas were expanded upon in this paper to
verify and prove our algorithm works as intended. To be more inclusive to mem-
bers outside of this field, we provide some important definitions and background
in this paper to ease the knowledge gap. Next, we will discuss the construction of
our algorithm, and prove it’s time complexity of O(n?). Examples of sentences
accepted and rejected by our algorithm are presented, and the full code is avail-
able for others to download and modify. Some improvements to be made in the
future are mentioned, which are not yet present in our current version of the
algorithm.

2 TBA

2 Definitions

In this section, we present definitions essential to the rest of this paper.

Adjoints are superscripts on basic types used to denote valid positions of ele-
ments within a sentence. More generally, we have left adjoints and right adjoints
(represented with a superscript “1” and “r” respectively) defined for every basic
type, a, and reduction rules for each:

ada—1 aa” — 1

Transitions allow a basic type to transform into another basic type, as de-
scribed by the transition table provided in Table 3.

A reduction combines two elements into a unit element, essentially removing
both elements from the sentence. For example, ss” — 1 is a reduction.

Components are symbols that form an encoding for words. Components are
broken up into two parts: base (basic type) and precedence (adjoint). For ex-
ample, the component z" consists of the base “x”, and the precedence “r”.
Furthermore, we convert the superscript “r” and “I” into the integer values of
1 and —1 respectively in the program. If a component has no adjoint, this is
represented with a 0 and the basic type is represented without a superscript.

The program follows the reduction rules of 'z — 1 and za” — 1.

A dictionary is a data structure where items can be accessed using a specific
key.

An underlink is a geometric representation of a valid pairing. Underlinks are
drawn under a given string of components to visually show the valid structure
of a given sentence. In other words, underlinks connect components that reduce
to 1. For example,

Fig. 1. Example of an underlink

A full listing of basic types and type assignments can be found in Chapters
31 and 32 of [3]. Here we present a small subset of the basic types and type
assignments that we will use in this paper.

Detecting Sentence Validity 3

7 - Subject
m1 - First Person Singular Subject
ms - Third Person Singular Subject
73 - Pseudo-Subject
s - Declarative Sentence (Statement)
s1 - Statement in the Present Tense
§ - Indirect Statement
i - Infinitive of Intransitive Verb
j - Infinitive of Complete Verb Phrase
o - Direct Object
6 - Pseudo-Object
n1 - Count Noun

Table 1. Basic types used in this paper

Table 2 is a dictionary to translate a word into its component form, as this
paper uses. Note that one may find many different valid component forms for a
given word, based on its context in a sentence. This property will be mentioned
briefly in the conclusion.

Tom - 73
John - w3
Marie - 3
I-m
him - o
she - 3
will - 7781 jl
come -1
doesn't - 5 so!
matters - w5 so
matter - o
not - 00"
see - whsol 7y
likes - 7TT810l7f3, (7T§87rl)
a- fg"onll
book - n1
watch - n1
which - nin10s
detests - w"'50"
-8

1

Table 2. Sample dictionary

4 TBA

Table 3 provides a list of the valid transitions of basic types used in this
paper. A more extensive list is provided in [3]. This list is used in Algorithm 2
(The Match Algorithm) to determine if two components can form a valid pair.

™ — T

T — 1, T
T3 — T3, T
7'l'A3—>7'l:37 T3, T
S — S
s1 — S1, S
§— S8, W3, ™
i, j
J—=J
o— 0
06— 0, 0
ny — N1

Table 3. Valid transitions

3 The Algorithm

Algorithm 1 (The Sentence Validity Algorithm) is a recursive algorithm that
determines whether an English sentence is grammatically correct.

To check validity we start with an English sentence, in this paper we mainly
focus on sentences in the present tense, however, there is the future possibility to
expand to more sentence types. From the English sentence, we encode each word
into its components using the dictionary provided in Table 2. We refer to this
list of components as the component sentence. Each component is then given
an index from 0 to n — 1, where n is the length of the component sentence. If a
sentence is determined to be valid, underlinks are computed. Figure 2 provides
a detailed breakdown of a sentence to its component sentence, indexes, and
underlinks. Note that the parenthesis used in each example are only used as a
visual aid to show the breakup of which components are part of each word, they
serve no function pragmatically and are not present within our program.

Once the component sentence is generated, we check if a valid match exists for
a given right component. We can find the locations of right components through
Theorem 2, with the first iteration of our algorithm running from the trivial fact
that the last component in a sentence must be a right component, and with the
criteria for a valid match being described in Lemma 2. If a corresponding left
component does exist, an underlink connects the two paired components, and the
problem is recursively split into two new subsections, referred to as the outer
and inner subsections. This naming convention comes from the nature of one
subsection being outside, and the other inside the new underlink. This property
can be found in more detail in Lemma 1.

Detecting Sentence Validity 5

If we look at Figure 2 for an example of the outer and inner subsections, we
can choose the indexes 2 and 9 to be the pair found in a given iteration of the
algorithm. The indexes from 0 to 1 would produce the outer subsection, and the
indexes 3 to 8 would produce the inner subsection.

This linking of pairs using underlinks produces the geometric visualization of
a valid sentence. If the algorithm successfully determines that each component
has a valid pair, then the sentence is grammatically correct, and the geometric
view of underlinks can be generated. If one component cannot find a valid pair,
then the entire sentence is grammatically incorrect, and underlinks cannot be
created.

For our purposes, the geometric view of components is purely used as a
visual aid to display why a given sentence is grammatically correct. For a more
detailed explanation of the properties observed with the geometric structure, we
encourage the reader to look into [1], and for a more mathematically rigorous
exploration [2].

I see a watch
1 (" s of d3) 3" o0 my (n1) s"
0 1 2 3 4 5 6 7 8 9

Fig. 2. Top Row: English sentence, Second Row: Components making up each word,
Third Row: Index labels for each component, Bottom Row: Underlinks

Our algorithm is based on a fact stated in [1], that if the location of a given
right component is known, then its matching left component can be found. With
the location of the last component in the string being a known right component,
we work through the string backward, matching the current end component of
our subsection to its matching left component.

Note that there is a pre-processing step done that rules out any odd length list
of components before we get to Algorithm 1, as an odd number of components
guarantees that one component will not find a valid pair.

TBA

Algorithm 1 The Sentence Validity Algorithm

Input: An even-length ordered list of components components, a starting index start,
and an ending index end.

Output: True if a sentence portion is valid, False otherwise.

Steps:

1. If end — start < 0, return True

2. Let index = end-1

3. If components|index] and components|end] are a valid pair (determined via match
algorithm), skip to Step 5, otherwise continue to Step 4.

4. If index > start, go back to Step 3 and subtract the value of index by 2, otherwise
return False.

5. Recursively call Algorithm 1 with components = components, start = start, and
end = index — 1. Save this result as outer.

6. Recursively call Algorithm 1 with components = components, start = index+ 1,
and end=end-1. Save this result as inner.

7. Return True if both outer and inner are True, otherwise return False.

Algorithm 2 Match Algorithm

Input: Two components left and right.

Output: True if these components form a valid pair, False otherwise.

Steps:

1.

Check that the precedence of left is exactly one less than the precedence of right.
If not, return False.

Check if the base of left and right are the same base. If True, return True, otherwise,
continue to Step 3.

If right has a precedence of 0, continue to Step 4. Otherwise, left must have a
precedence of 0, and skip to Step 5.

Check the transition table for the base of right. If any of the transitions are the
same base as left, return True, otherwise return False.

Check the transition table for the base of left. If any of the transitions are the same
base as right, return True, otherwise return False.

Detecting Sentence Validity 7

Theorem 1. Algorithm 1 can be made to Tun in polynomial time, more specif-
ically O(n?).

Proof. The following recurrence relation describes the runtime of Algorithm 1,

0 ,n=20
T(n) = N
T(n—2)+§ ,n>0

where n is the length of the component string.

For simplicity, the constant terms are omitted from the second case of the
above function definition. These constant terms come from the Match Algorithm,
with Steps 4 and 5 taking the longest to complete due to the transition table
lookup and check.

Now we present the proof of the runtime in detail:

ﬂm:Tm—m+g

n—2+n
2 2
n—4 n-—2 n

2+2+2

=T(n—4)+

=T(n—6)+

_o+2+4+ +n—2
T2 22 2

n
=0+1+2+ 45— 1+

+n
2

n
2

O

We now summarize two lemmas from [1] that were essential in developing
the algorithm.

Lemma 1 establishes the idea of working backward in Algorithm 1 given that
we know a right endpoint because s” (which is a period) is always the rightmost
component of a sentence.

Lemma 1. If R: s1...s, = 1 is a transition then the iterator of a Tight end-
point of a link is the successor of the iterator of its left endpoint. [1]

Lemma 2 guarantees us that the left endpoint of underlink will always come
before the right endpoint and that the two components at the endpoints must
be compatible, i.e. reduce to 1.

8 TBA

Lemma 2. If {i,k} € R and i < k, then the algebraic condition s;s — 1
implies that s; = a®) and s, = b for some integer z and appropriate basic
types a, b. [1]

Now we present a new lemma and theorem that are the foundation of Al-
gorithm 1. Lemma 3 is a crucial intermediary step in proving Theorem 2. If we
know that a left component is position ¢ and its corresponding right component
is at position k, this allows us to infer the location of the adjacent component
at ¢ — 1. This component must be either a right component within the range of
0 to i — 2, or a left component within the range of k + 1 to n — 1. This is due to
the inability of underlinks to intersect, as explained in [1].

Lemma 3. For two pairs of components {s;, sk} and {s;_1,5,}, if both s; and
si—1 are left components, then the position of s, is greater than the position of
Sk -

Proof. By definition we know i < k and i — 1 < r. Since i — 1 < i < k we know
r > k because underlinks can’t cross. If r is anywhere from i +1,---k — 1 we
would break that property. a

A visual example of Lemma 3 can be seen in Figure 2, where labeling indexes
1 =4, 1—1=3, k=5 we see that the right component of ¢« — 1 must be from
6,---,9 and it happens to be » = 6 in this example.

Theorem 2 shows that when processing the components from right to left if
we consider a point where we just found a left component at ¢ then ¢ — 1 has to
be a right component.

0 (i—=2)(i—1)i(i+1)- (k=1)k---n—1

Table 4. All indices in blue have been paired already. i — 1 in red is the index we are
considering. All indices in black may or may not have been paired.

Theorem 2. Assume all components from syx11 to s,_1 have already been paired.
If a pair (s;, si) exists where s; is the left component, then s;—1 must be a right
component.

Proof. Assume s;_; is a left component. By Lemma 3, the corresponding right
component of s;_1 must be somewhere to the right of s;. However, based on the
assumption declared in the theorem, there are no valid right components to be
paired with, since every component is already paired. Therefore, s;_; must be a
right component. Table 4 illustrates this idea. O

Detecting Sentence Validity 9

4 The Implementation

In this section, we present the main block of code implementing the algorithms
presented in this paper. The full code can be found at [5].

Going over the imports, they are all original code stored in separate files for
easy navigation of the program.

Basic
— A format to store each basic type as a unique integer id, accessible

through the basic types common name. Ex: Basic.PI = 0, Basic.PI1
= 1, etc. The basic types used are accounted for in Table 1.

transitions

— Used by the Match Algorithm to determine if a base can be transitioned
to another base. These transitions are described in Table 3.

dictionary

— Used in “sentence_to_components()” to convert each English word into
it’s component form, as described in Table 2.

display_enums

— Converts the integer form of a basic type back into a String representa-
tion for viewing as an output.

get_raw_pairs

— Used after the Sentence Validity Algorithm runs, it outputs the set of
index pairs of the matched components.

draw_underlinks

— Takes in extra information we can extract from the running of the algo-
rithm and uses it to display the underlinks in the terminal output.

Before reading the code, it is important to understand some of the data
structures in place.

To store our components, which are comprised of a base and a precedence, we
create a tuple of the form (base, precedence). The base is the integer id discussed
above (enum), and the precedence is an integer discussed in the definition of
components in section 2.

To draw the underlinks, the algorithm keeps track of the current recursion
depth, which allows us to draw underlinks in the terminal that do not cross.
Some underlinks can be drawn closer together, but this would require extra
processing. Since the main goal of the algorithm is to determine sentence validity,
the underlinks were added as a visual aid, and are not the priority output of the
algorithm.

The main file with both algorithms discussed in this paper are shown in
Appendix A.

10 TBA

5 Some Examples

This section will present some example sentences to help the reader. We demon-
strate a few examples of valid and invalid sentences based on our algorithm.
Diagrams without underlinks are invalid, as underlinks can only be drawn on
valid sentences. Figure 6 shows an invalid sentence and Figure 7 shows the valid
correction of Figure 6. Figure 6 will be detected as invalid at pre-processing
stage since it has an odd number of components. Figure 8 shows another invalid
sentence and it will be detected as invalid when we attempt to find a match for
the component s” in the first step.

She will see him
T (" s 4h i o (o) s"
0 1 2 3 4 5 6 7

Fig. 3. Sentence 2

Marie likes a book
T (7" s1 ol 1f3) 3T 0 ny (n1) s"
0 1 2 3 4 5 6 7 8 9

Fig. 4. Sentence 3

Detecting Sentence Validity 11
John likes a book which Marie detests
T3 (71”” s1 o 7f3) 3" 0 py (nl) ny N1 o g (71'3) T 5 o (s’")

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

VQ’/\‘QS//

Fig. 5. Sentence 4

Tom matters not
T3 (ms™ s o) o o (s7)
0 1 2 3 4 5 6

Fig. 6. Sentence 5

Tom doesn’t matter
3 (ms”™ s o) o (s")
0 1 2 3 4 5

Fig. 7. Sentence 6 (Sorry to all Tom’s)

12 TBA

John a book
3 (3" o nb) m (s™)
0 1 2 3 4 5

John likes Marie
T3 (ms™ s1 ol 1f3) m3 (s™)
0 1 2 3 4 5 6

John likes Marie
T3 (ms" s ah) T3 (s")
0 1 2 3 4 5

Fig. 10. Sentence 9 - Algorithm accepts this sentence due to an alternate encoding for
likes being used

6 Conclusion

We hope the algorithm presented here can be expanded upon to accept more
valid sentences than the current solution poses. One example of a sentence that
our current model cannot accept is “John likes Marie .”, even though this is
a grammatically correct sentence. This is a result of the limit in our current
transition table, where each word can only have one component encoding (see
Figure 9). Using an alternative encoding of likes, “m3"s7!”, we can use this in
our program and see a successful acceptance of the sentence (see Figure 10).

A possible method to solve this problem would be to change the dictionary
in Table 2 to store lists of component encodings, instead of a single component

1

Detecting Sentence Validity 13

encoding for each word. After that, we would generate all permutations of the
component sentences based on each word with multiple encodings. If any of the
component sentences is determined as valid, then the sentence can be determined
as grammatically correct. This would create an exponential increase in runtime,
but seems like a valid first step to solve this problem. Future work may look into
this method and ways to optimize it.

It would be worth exploring another intriguing feature, which is the ability
to correct improper sentences. This is demonstrated in Figures 6 and 7. Fixing
a sentence may have to include a model for finding the semantic structure of the
sentence, which is not possible with our current system.

References

1. Anne Preller : Toward Discourse Representation via Pregroup Grammars. Journal
of Logic, Language, and Information, Vol. 16, No. 2 (April 2007), pp. 173-194

2. Bob Coecke, Mehrnoosh Sadrzadeh, Stephen Clarky : Mathematical Foundations
for a Compositional Distributional Model of Meaning. CoRR, (March 2010).

3. Joachim Lambek : From word to sentence: a computational algebraic approach to
grammar. (2008).

4. Joachim Lambek : Type grammar revisited. Logical Aspects of Computational Lin-
guistics. (1999).

5. GitHub for the code. https://github.com/ItBeCharlie/SentenceValidity

A Code

from basic import Basic as B
from transitions import transitions

s from dictionary import dictionary

1

from helpers import display_enums, get_raw_pairs

5 from underlinks import draw_underlinks

def main () :

sentence = input()

components = sentence_to_components (sentence)
display_enums (components)

valid, pairs = sentence_validity_preprocessing(components
)

print (valid)

if valid:

print (sentence)
draw_underlinks (components, pairs)
print (get_raw_pairs (pairs))

def sentence_to_components (sentence_string) 8

41

14

def

def

TBA

Each component is stored as a tuple such that (base,
precedence)
components = []
sentence = sentence_string.split ()
Get the base for each word in the sentence from the
dictionary
for word in sentence:
components.extend (dictionary[word])
return components

sentence_validity_preprocessing (components) :
Sentences cannot have an odd number of components

if len(components) 7% 2 == 1:

return False, []
valid, pairs, _ = sentence_validity(components, 0, len(
components) - 1)

return valid, pairs

sentence_validity (components, start, end, pairs=[]):

nmnn

Recursive method to reduce an entire sentence. Will
return True if

the sentence can be reduced all the way to 1, as well as
a list of all

the pairs made in the reduction. If the reduction is
invalid, the pairs

will be returned as an empty list

Oparam sentence: List of components

@param start: Starting index of subsection

@param end: End index of subsection

O@param pairs: List of all the pairs that reduce with each
other

Q@return boolean, list
nmnn
Base case: Empty sentence is valid
if end - start <= O0:
return True, pairs, O
Work our way backwards through the sentence, checking
every
other component, and seeing if we have a valid pair
for index in range(end - 1, start - 1, -2):
Check if the given pair is a valid match
if match(components[index], components[end]):
Recursive call for outer
valid_outer , pairs, depth_outer =
sentence_validity (

Detecting Sentence Validity 15

components, start, index - 1, pairs
)
Recursive call for inner
valid_inner, pairs, depth_inner =
sentence_validity (
components, index + 1, end - 1, pairs
)
Calculate depth of current component
depth = max(depth_inner, depth_outer - 1) + 1

Add our new pair
pairs.append((index, end, depth))

return valid_outer and valid_inner , pairs, depth
If we check every term and do not find a match, the
sentence is invalid
return False, [], O

def match(left, right):

Checks if the left and right tuple can be reduced to 1
Check that the left precedence is 1 less that the right
precedence
if left[1] - 1 == right[1]:
return False
Check if the tuples are the same basic type, no further
checks needed
if left[0] == right [0]:
return True
Transitions can only occur on O precedence
We check if the left or right tuple is the one with O
precedence
Then by comparing the components bases to all possible
transitions of the other
We can verify if the match can be made
if left[1] == 0:
return right [0] in transitions[left [0]]
return left[0] in transitions[right [0]]

main ()

